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ABSTRACT 

We investigate an analogue of the L2-Betti numbers for amenable linear 
subshifts. The role of the von Neumann dimension shall be played by the 

topological entropy. 

1. I n t r o d u c t i o n  

Let F be a finitely generated group. Then the Hilbert space/2(F) has a natural 

left F-action by translations: 

L.~(f)(5) = f (7-15) .  

Using the so-called von Neumann dimension we can assign a real number to 

any F-invariant linear subspace of [/2(F)]n, n E N satisfying the following basic 

axioms [16]. 

1. Pos i t iv i ty :  If V C [/2(F)]" F-invariant linear subspace, then direr(V) >_ 0. 

Also, direr(V) = 0 if and only if V = 0. 

2. Invar iance :  If V C [12(F)]n, W C [/~(r) ]  ~ and T is a F-equivariant 

isomorphism from V to a dense subset of W, then dimr(V) = dimr(W).  

3. Add i t i v i t y :  If Z is the orthogonal direct sum of V and W, then dimr(Z)  = 

direr (V) + direr (W). 
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4. Con t inu i ty :  If V1 D 1/2 D .. �9 is a decreasing sequence of F-invariant linear 
subspaces, then 

d i m r ( A  Vj) = lira dimr(Vj). 
j--+oo 

j = l  

5. N o r m a l i z a t i o n :  d i m r [ / 2 ( r ) ]  = 1. 

There is an important application of the von Neumann dimension in algebraic 

topology due to Atiyah [1] (see also [4]). He defined certain invariants of finite 

simplicial complexes: the L2-Betti numbers. The idea is the following. Let 

be an infinite, simplicial complex with a free and simplicial F-action as covering 

transformations such that K / F  = K is finite. Denote by C~2)(A" ) the Hilbert 

space of square-summable, real p-cochains of h'.  Then one has the following 

differential complex of Hilbert spaces, 

where the dp's are the usual coboundary operators. 

Note that  C~2 ) (K) - [/2 (F)]lKpl, where Kp denotes the set of p-simplices in K. 

Atiyah's L2-Betti numbers are defined as 

L(2)bP(K) = dimr Kerdp - dimr Imdp_l. 

Let us list some basic results on the L2-Betti numbers. 

�9 (Dodziuk, [4]) If A" and L are homotopic by a F-invariant homotopy, then 

the corresponding L2-Betti numbers of h ' / F  = K and L /F  = L are equal. 

�9 (Cohen, [3]) 
n 

E(-1)PL(~)bP(K) = e(K), 
p = 0  

the Euler characteristic of K.  

�9 (Cheeger and Gromov, [2]) If fx" is contractible and F is amenable, then all 

L2-Betti numbers are vanishing. 

�9 (Linnell, [11]) If F is elementary amenable and torsion-free, then all L 2- 

Betti numbers are integers. 

�9 (Lfick, [12]) Let r be residually finite and 

F D F I D F 2  D . . . ,  5 P i = l r  
i = 1  
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normal subgroups of finite index and let Xi = h ' /F i  be the corresponding 

finite coverings of K.  Then 

d i re r  H p (Xi, R) 
L(2)bP(K) = lim 

i - ~  IF : ril 

�9 (Dodziuk and Mathai [5]) If {L,~}n~__l is an exhaustion of /~ by finite 

simplicial complexes spanned by a {Fn}n~=l F~lner-exhaustion, then 

dima HP(Ln, R) 
L(2)bP(K) = lim 

IFnl 

Note that the second and the third results together imply that if K is an acyclic 

simplicial complex with amenable fundamental group, then its Euler character- 

istic is zero [2]. Another interesting application is due to Liick: If F is amenable, 

then the group algebra C[F] as a free module over itself generates an infinite 

cyclic subgroup in the Grothendieck group of C[F] [13]. 

The analogue setting we are investigating in this paper is the following. Let 

F be a finitely generated amenable group (see [6] why amenability is crucial). 

We denote by ~-~r the full Bernoulli shift that  is the linear space of F2-valued 

functions on F, where F2 is the field of two elements. The space ~ r  is a compact, 

metrizable space in the pointwise convergence topology equipped with the natural 

left F-action by translations. A space V C [ ~ r ]  ~ is a linear subshift if it is 

linear as a F2-vector space, closed in the topology and invariant with respect to 

the F-action. The notion of dimension is the topological entropy of the linear 

subshifts. This is well-known for Z and Zd-actions and somehow less-known for 

general amenable group actions (nevertheless see [14]). We shall observe that our 

dimension hr  satisfies similar axioms as direr: 

1. N o n n e g a t i v i t y :  For any V linear subshift : hr (V)  > 0. But it can be 

zero even if V is not zero. 

2. M o n o t o n i c i t y :  If V C W, then hr (V)  < hr(W).  

3. Invar iance :  If T : V --+ W continuous F-equivariant linear isomorphism, 

then hr(V) = hr(W). 
4. Add i t i v i t y :  If Z = V | W, then hr (Z)  = hr(V)  + hr (W).  

5. C o n t i n u i t y :  If V1 D V2 D -..  is a decreasing sequence of linear subshifts, 

then 
C ~  

h r ( N  yj) = lim hF(Yj). j---~c~ 
j=l 

6. N o r m a l i z a t i o n :  hr(Y:~r) = 1. 
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Now let h" be as above. Then we have the ordinary cochain complex of F2- 

coefficients over K: 

cO(~., F2) ~ C1(~ ,F2)  ~ . . .  d~ ,  Cn(~., F2)" 

Then the p-cochain space CP(ff[, F2) is F-isomorphic to [y~r] IKpl, where Kp de- 

notes the set of p-simplices in K.  We define the p-th entropy Betti number/~E(K) 

as hr (Ker dp) -hE (Im dp_ 1). In this paper we shall prove the following analogues 

of the L2-results. 

�9 If h" a n d / ,  are homotopic by a F-invariant homotopy and F is poly-cyclic, 

then the corresponding entropy-Betti numbers of A'/F -- K and I . /F  = L 

are equal. 

n 

= e ( K ) ,  

p=0 

the Euler characteristic of K.  

�9 I f / (  is contractible, then all entropy-Betti numbers are vanishing. (This 

is quite obvious; the point is that the corollary on the vanishing Euler- 

characteristic still follows from this and the previous statement.) 

�9 If  F is poly-infinite-cyclic, then all entropy-Betti numbers are integers. 

�9 Let F be free Abelian and 

I ~ D F1 D F2 D "" ", 5 F~ = Ir 
i=l 

normal subgroups of finite index and let X{ -- K/Fi be the corresponding 
finite coverings of K. Then 

bPE(K) -- lim dimF2 HP(Xi, F2) 
i -+~ IF: ril 

�9 If {Ln}n~=l is an exhaustion of h" by finite simplicial complexes spanned by 

a { n}n=l F~lner-exhaustion, then 

bP(K) = lira dimF2 HP(Ln,F2) 
n_+oo IFnl 

We shall also prove an analogue of Liick's result on the Grothendieck-group 

for the group algebras F2[F]. 
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2. Amenable  groups and quasi-tiles 

Let F be a finitely generated group with a symmetric generator set 

{ g l , g 2 , . . . , g k } .  The right Cayley-graph of F, Cr,  is defined as follows. Let 

V(Cr)  = F, E ( C r )  -- {(a,b) C F • F: there exists gi : agi -- b}. The shortest 

path distance d of CF makes F a discrete metric space. We shall use the following 

notation. If H C F is a finite set, then B~(H)  is the set of elements a in F such 

that  there exists h E H, d(a, h) < r. We denote B I ( H ) \ H  by OH and B r ( H ) \ H  

by O~H. An exhaustion of F by finite sets 

l r  E FI C F2 C . - - ,  
j=l 

is called a Fr if for any r E N: limn~oo(iO~Fnl/iFn]) = O. A 

group F is called amenable if it possesses a Fr Some amenable 

groups have tiling F01ner-exhaustion, that  is any Fn is a tile: There exists C C F 

such that  {cFn}ceC is a parti t ion of F. For example, Z ~ has this tiling property. 

As observed by Ornstein and Weiss [15] any amenable group has quasi-tiling 

Fr Let us recall their construction. Let {Ai} i~ l  be finite sets. 

Then we call them e-disjoint if there exist subsets Ai C Ai so that  A~ N A j  -=- 0 if 

i ~ j ,  and IAil/IAil > 1 - e for all i. Now let B another finite set. We say that  

{Ai}i~l (1 - e)-cover B, if 

ni'J~=lA~l > 1 - e .  
I B I  - 

The subsets of F, l r  C T1 C T2 c . . .  C TN, form an e-quasi-tile system if for 

any finite subset of A C F there exists Ci c F, i = 1, 2 , . . . ,  N such that  

1. CiT~ N CjT j  = O if i ~ j .  

2. {cT~ : c E Ci} are e-disjoint sets for any fixed i. 

3. {CiTi,  1 > i > N} form a (1 - e)-cover of A. 

The following proposition is Theorem 6 in [15]: 

PROPOSITION 2.1: I f  F1 C ['2 C �9 �9 �9 is a FOlner-exhaustion of  an amenable group, 

then for any e > 0 we can choose a finite subset Fn~ C Fn2 C "'" C FnN such 

that  they  form an e-quasi-tile system. The number  N m a y  depend on e. 

3. The topological  entropy of  linear subshifts 

First of all we define an averaged dimension h r (W)  for linear subshifts and 

then we shall show that  it coincides with the topological entropy. Let F be 
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a finitely generated amenable group with F01ner-exhaustion l r  6 F1 C F2 C 
OO "",  Uj=l Fj = F. We introduce some notations. If A C F is a finite set, then 

let [~A] r be the space of functions in [}--~r] r supported on A. Also, [~--]O]r denotes 

the space of finitely supported functions. Now let W c [~-'~r] r be a F-invariant 

not necessarily closed linear subspace. Then for any finite A C F, let WA C [~--]~A] r 

be the linear space of functions ~ supported on A such that there exists u G W: 

Definition 3.1: hr (W)  = limsuPn_rcc(log 2 IWF.]/]Fn]) 

Note that log 2 ]WEN I is just the dimension of the vector space WEn over the field 

F2. It will be obvious from the next proposition that h r (W)  does not depend on 

the particular choice of the exhaustion. 

PROPOSITION 3.1: 1. h r (W)  = hr (W),  where W denotes the closure of W in 
the pointwise convergence topology. 

2. h r (W)  = liminfn-~oo(log 2 IWF~I)/IFnI, hence l imn_~(log 2 IwF~I)/IF, I) 
always exists and equals hr (W).  

Proof: The first part is obvious from the definition. For the second part we 

argue by contradiction. Suppose that 

h r (W)  - l iminf l~ IWFnl  --  (~ > O. 
n---+c~ IFnl 

Consider a subsequence Fnl c Fn2 c .-.  such that 

l~ l We.,  I I WF. I 
sup < lira inf l~ + e, 
~oo lFn, I n~oo IFnl 

where the explicit value of e shall be chosen later accordingly. Then pick an 

e-quasi-tile system from our subsequence: Fml C Fm2 C "'" C FmN. Now we 

take an arbitrary F~ from the original Felner-exhaustion. By Proposition 2.1 we 

have an e-disjoint (1 - e)-covering of Fn by translates of the quasi-tile system. 

Denote by R1, R2, . . . ,  Rk those tiles which are properly contained in Fn. Then 

we have the following estimate, 

k 

(1) ]WF,~ I < 2(r'IF'~I+rlF'~\BD+'(OF")I) H IWR' 1, 
i=1 

where D is the diameter of the largest tile Fm~. The inequality (1) follows 

from the fact that a function ~ 6 WE, is uniquely determined by its restrictions 

on the covering tiles and its restriction on the uncovered elements. The latter 
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one consists of two parts: the elements which are not covered at all by the 

original covering and the elements which are covered only by tiles intersecting 

the complement of Fn. These "badly" covered elements must be in a (D + 

1)-neighbourhood of the boundary of Fn. Also, by e-disjointness we have the 

estimate 

(2) 

Therefore, 

Hence, 

(3) 

k 

i=1 

[WFn i "~ 2(rcIF'~L+rlF~ \ BD+~ (OFn)I)2 T~-i~ (hr--5+~)iF'~I" 

rIFn\BD+l(OFn)l) 1 ~  l~ IWF~ [ < re + + (hr - ~ + e). 
irnl - IF L - 

Consequently, if we choose e small enough, then for large n, 

6 log2 [WEN [ <_ hr - - 
Irnl 2' 

leading to a contradiction. 1 

Now we recall the notion of topological entropy. Let F be an amenable group 

as above and let X be a compact metric space equipped with a continuous 

F-action; c~: F --+ Homeo(X).  Instead of the original definition of Moulin 

Ollagnier [14] we use the equivalent "spanning-separating" definition, that  is 

a direct generalization of the Abelian case [20]. We call a finite set S C X 

(n, e)-separating if for any distinct points s, t C S there exists -~ E F~ such that  

d(a(7-])(s) ,a(7-1)( t ) )  > e. We denote by s(n,e) the maximal cardinality of 

such sets. We call a finite set R C X (n, e)-spanning if for any x E X there 

exists y e R such that  d(a(7-1)(x) ,a(7-1)(y))  <_ e, for all V �9 F~. We de- 

note by r(n, e) the minimal cardinality of such sets. Obviously, if d < ~ then 

s(n, e') > s(n, e), r(n, e') >_ r(n, e). Also, we have the inequalities 

r(n,  e) < e) < r(n,  

Indeed, any maximal (n, e)-separating set is (n, e)-spanning. On the other hand 

if R = xl ,  x 2 , . . . ,  xk is a minimal (n, ~/2)-spanning set, then 

k 

i=1 
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where 

D(xi ,n ,~/2)  = {y E X: d(a(7-1) (x) ,a(7- ' ) (y ) )  < ~/2, for all 7 E Fn}. 

Any D(x i ,n , s /2 )  can contain at most one element of a (n,e)-separating set, 

hence s(n, e) <_ r(n, r 

Consequently, 

lim lim sup l~ r(n, ~) _ lira lira sup l~ s(n, e) 
e-'+O n--+(x~ [Fn[ e--~O n--+~o [Fn[ 

This joint limit is called the topological entropy of the F-action and denoted by 

PROPOSITION 3.2: Let V c [ ~ r ]  ~ be a linear subshfft. Then htL~ = hr(V).  

Proof: First we fix a metric on V that defines the pointwise convergence topol- 

ogy. If v, w E V, then let dy(v, w) --- 2 - (n- l ) ,  where n is the infimum of k's such 

that v IRk ~ W IRk" First note that I VG[ <_ s(n, 1). Indeed if v l, v2 , . . . ,  v~ is a sub- 

set of V such that v~ IF~r vj ]F~ when i r j ,  then there exists 7 E F~ such that 

L~-~v~(lr) r L~-~vj(lr) .  Fix an e and choose I(~,M~ E N such that e > 2 -K~ 

and FK~ C BM~(lr). Then we claim that s(n,e) <_ IVBM~(F,)I. Indeed, if 

X ]BM~(Fn) = y [BMe(Fn)' then for any 7 E F~, dv(L~-~(x) ,L~-l(y))  <_ 2 -K~ < e. 
Hence if e < 1, 

hr(V)  = lim l~ ]VF~I < log2(s(n,e) ) < lim log2 IVB,~o(F.)] = hr(V).  I 
n-~cc ]FnI - - n--~ IFnI 

4. E x t e n d e d  con f igu ra t ions  

The notion of extended configuration is due to Ruelle in a slightly different form. 

Again we start with a linear subshift V C [Y~r]"" For any A C F finite set 

let V~ C [~A]" be a finite dimensional linear subspace satisfying the following 

axioms: 

�9 Ex tens ion :  VA C V~. 

�9 Invariance:  V ~  = L,(V~). 
�9 T rans i t i v i ty :  If h C M, then for any ~ E VM ~ there exists p E V~ such 

that ~ IA = # IA. 

�9 D e t e r m i n a t i o n :  If~ E [ ~ ] "  and for any A C F finite there exists ~A E Vff 

such that ~ [A = ~A, then ~ E V. 

We call such a system an extended configuration of V. Its topological entropy is 

defined as h~ (V) = lira sup n _ ~  ItS,  ]/]F.]. 
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P R O P O S I T I O N  4.1: ha(V ) = hr(V)  (compare to Theorem 3.6 [19]) 

Proof: Let us suppose that  ha(V ) - h r ( V )  = 5 > 0. Again choose an e-quasi-tile 

system F ~ ,  Fn~, �9 �9 Fnx such that  IVF,~ I < 2(hr+e)lF~l, where the explicit value 

of e will be given later. Denote by VFk the space of functions p in VF~, such that  

there exists ~ E Vffk(F~ ) with ~ IF~=  p IF,~- By Extension and Determination 

properties it is easy to see that  for large p 

(4) VL~ -- V ~ ,  

where 1 < i < N. Let us pick a large p. Then we can proceed almost the same 

way as in the previous section. Denote by Ri, 1 < / < k those translates in the 

e-disjoint ( 1 -  e)-covering of a F01ner-set F~ such that  not only the Ri 's  but even 

the Bp(Ri) balls are contained in Fn. Then by Transitivity we have the following 

estimate, 
k 

IvYol _< 2 I-[ IvLI" 
i=1 

That  is by Invariance, (2) and (4), 

log2 IVFal < re + rIFn\Bp+O+I(OFn)I + 1--~---(h~ r - 5 + e) 
IY . I  - IYnl 

which leads to a contradiction provided that  we choose e small enough. | 

5. Basic properties 

Now we are in a position to prove the basic properties of hr  as stated in the 

Introduction. The Monotonicity, Normalization and Positivity axioms are 

obviously satisfied. 

LEMMA 5.1: Let V, W C [ ~ r ]  r be linear subshifts such that V ;) W = O. Then 
hr(V) + hv(W) = hr (V  ~ W). 

Proof: First note that  just because V N W  is the zero subspace it is not necessarily 

true that  VA n WA = 0 as well. However, we can prove that  N2  = VAn WA is 

an extended configuration of the zero subspace. We only need to show that the 

Determination axiom is satisfied. Suppose ~ E [}-~r] r such that  ~ [F~ E VF,, NIlZF,~. 
Then there exists vn G V, w,~ G W such that  ~ I f =  vn IF,, = w,~ IF,,. Hence 

vn --* ~, u,~ --+ ~ in the topology of [~r]""  The spaces V and W are closed, thus 

C V ~ W, hence ( = 0. By elementary linear algebra, 

dimF2 (V �9 t~)A + dimF~ N~ ~ = dimF2 I~ + (limF2 II/A. 
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Hence by our Proposition 4.1 our Lemma follows. | 

Now we prove a property of the entropy that is slightly more general than 

invariance. 

PROPOSITION 5.1: Let T: V --+ W be a continuous F-equivariant linear map 

between linear subshifts V C [~r]  r, W c [~r]  ~. Then hr(Ker  T) + h r ( I m T )  -- 

hr(V).  

Proof  First of all let us note that by the compactness of V and the continuity 

of T both Ker T and Im T are linear subshifts. Now let us consider the natural 

right action of F2(r) on [~r] ~, R~f(x)  = f(xw). This action obviously commutes 

with our previously defined left F-action. The right action can be extended to 

s x r matrices with coefficients in F2(F) acting on the column vectors [ ~ r ] L  

Obviously, any such matrix M defines a F-equivariant map; TM: [~p]r  + [~i,] s. 

LEMMA 5.2: Any  continuous F-equivariant linear map T: V --+ W can be given 

via multiplication by some s x r matr/x TM with coel~cients in F2(F). 

Proof." Since T is uniformly continuous the value of T (v ) ( l r )  is determined by 

the value of v on a finite ball B, where B does not depend on v. Hence for any 

l < i < s  
r 

T(v)(IF) = E E ci~ " Vj("f), 
"/EB j=l 

Mat~xr(F2[F]) define a s x r where c 0 E F2. By {TM}o = {~-~zeB ~ CO~/ } 
matrix. Then for any v E V, TM(v)( lr )  = T(v) ( l r ) .  Hence by the F-equivariance 

of the matrix multiplication 

TM(V)('~) = L~-,  ( rM(v) ) ( l r )  = TM(L~-,  (v)) ( l r )  

: T ( L y - , ( v ) ) ( l r )  : T(v)(7).  | 

Now we return to the proof of our Proposition. We denote by TM the matrix 

and by k the diameter of the ball B defined in our Lemma. Let 

{v e [~A]< : there exists z e VB~(A), such that z Ih---- v[A and T(z)Ih-~ 0} 

and 

M~ = {w e [~h]* : there exists z e VBk(A ), such that T(z)  ]a= w IA}. 
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Then NA ~ is an extended configuration of Ker TM, M~ is an extended configu- 

ration of ImTM. Let TA: VBk(A) --+ [~A] 8 be the restriction of T onto A. Then 

Im TA = MA ~. We have the usual pigeon-hole estimate: 

(5) IN ol < I KerTF  I_< INF I2 
Also, by linear algebra we obtain 

dimly2 Ker TF~ + dimF~ Im TF. ---- dimF: VBk (F~), 

that is 

(6) log21 Ker TF. ] + logz [ hn  :FF. ] = log2 ]VBk (F.)I. 

It is easy to see that (5) and (6) together imply the statement of our Proposition. 

1 

Now we prove the Continuity property. 

If V 1 D V 2 D ... is a decreasing sequence of linear subshifts, 

o o  

h F ( A  V j) : l i m  hF(VJ). j --+ (c 
j = l  

Proof." For any k E N, V ~ D ~j~=l vJ. Hence 

O<3 

h r ( N  yJ) <_ hm hr(YJ). 
2 ---+ c ~  j----1 

We need to prove the converse inequality. Suppose that for all j, hr(V j) >_ 
hr(~j=l vJ) + 2e. Let T(j) be a monotone increasing function such that  

l~ IV~81 
_> hF(A VJ) + 

It l j=l  

when s >_ T(j). We define a monotone non-decreasing function S: N -4 N such 
that  S(n) = I if there is no such j so that T(j) <_ n, and 

S(n) = max{j :  T(j) <_ n} 

otherwise. Then S(n) --+ oc as n --+ oc. Define VA a = VSA (n), where n is the 

smallest integer such that  IFnl > IAI. It is easy to see that VA ~ is an extended 
oc h co configuration of Aj=I vJ. Therefore, (log 2 IV~,I)/IF,~I --+ r(~j=l YJ). On the 

h other hand, by our construction (log 2 IVF~ I)/IFnl >_ ~r(["]j=l vJ) + e, leading to 

a contradiction. | 

P R O P O S I T I O N  5 . 2 :  

then 
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6. P o n t r y a g i n  dua l i t y  

In this section we recall the Pontryagin duality theory [8]. Let A be a locally 

compact Abelian group and let A be its dual, that is the group of continuous 

homomorphisms X: A ~ S ~ = {z C C: ]z I = 1}. According to the duality 
theorem A is naturally isomorphic to its double dual. The relevant example for 

us is A = [~-~r]r; its dual is [~-~]~ the group of finitely supported elements, where 

( x , f )  -- ~ r ( ~ ( 7 ) , f ( ~ ) )  for )~ e [}-~o]~ and f �9 [~'~r] ~. Here (a,b) is defined 

as Eir.=l a~bi. The additive group of F2 is viewed as the subgroup {-1,  1} �9 S 1. 

If H C [~-~.r] r is a compact subgroup, then 

o 

H • = {X �9 [ E ]  ~': (x,h} = 1, for any h �9 H}. 
F 

.Conversely, if B c [}-~o]~ is a subgroup then 

B• = {f  �9 [ E ]  r :  (x,f} = 1 for any X �9 B}. 
F 

Then (H• • = H, (B• • = B. If A, B locally compact groups and ~: A --+ B 

continuous homomorpisms, then its dual r /~ -+ .4 is defined by (r a) = 

(X, r Again the double dual of r is itself if A and B are both compact or 

both discrete. Then r is injective resp. surjective if and only if r is surjeetive 

(resp. injective). Moreover, if we have a short exact sequence of compact or 

discrete groups 

1 --+A1 --+A2 --+ . "  ~ A n  -+ 1, 

then its dual sequence 

Xn -+ -*0 

is also exact. The next proposition is a version of a result of Kitchens and Schmidt 
P]- 

PROPOSITION 6.1: The Pontryagin duality provides a one-to-one correspondence 

between linear subshifts and finitely generated left F2 [P]-modules. 

Proof" First note that if L~ is the left multiplication by 7 on [~~r] r, then 

L.y is the left multiplication by 7 -1 oi1 [~o]r. Hence if V -~ [}--]~r] r is the 

natural imbedding of a linear subshift, then (F2[F]) r ~ [~O]r ~ ~ is a surjective 

F2[F]-module homomorpism, that is k" is a finitely generated left F2[F]-module. 

Conversely, the dual of a finitely generated F2 [F]-module is a linear subshift. It is 
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important  to note that  if V C [ ~ r ]  ~, W C [~-~'~p] ~ are isomorphic linear subshifts, 

then the dual of this isomorphism provides a module-isomorphism between W and 

V. Conversely, the duals of isomorphic modules are isomorphic linear subshifts. 
| 

7. T h e  N o e t h e r  p r o p e r t y  of  g r o u p  a l g e b r a s  

Let V C [~p]  r be a linear subshift. We denote by V ~ the subspace of finitely 

supported elements. 

PROPOSITION 7.1: I f V  ~ contains a non-zero element then hr (V  ~ > 0. 

Proo~ Let us suppose that  a ball B~(l r )  contains the support  of a non-zero 

element in V ~ We claim that  there exists an e > 0 such that  if n is large enough, 

then Fn contains at least elFn I disjoint translates of B r ( l r ) .  First note that  the 

claim implies our Proposition. If we have Mn translates of B~( l r )  in Fn, then we 

can find 2 Mn different elements of V ~ which are all supported in Fn. Therefore 

log 2 IVFnl > Mn clFn I _ 

IFnl - >- IF, l 

Hence hr (V ~ _> e. Let us prove the claim. Pick a maximal 2r-net al ,  a 2 , . . . ,  aM,,, 

that  is a maximal  set of points in Fn such that  any two have distance greater 

than or equal to 2r. Then the 4r-balls around the points ai are covering Fn. 

Hence M~ >_ IFn]/B4,.(lr). Then at least half of the ai's are in Fn\B~+I(OFn). 

The balls around these elements being far from the boundary are completely in 

Fn. Hence we have at least �89 disjoint translates of B r ( l r )  in F,~. 
| 

In the rest of this section we shall have an extra assmnption on the amenable 

group F. We call an amenable group Noether if F2[F] is a Noether ring. That  is, 

any left submodule of (F2[F])" is finitely generated. According to Hall 's theorem 

[17], if F is polycyclic-by-finite then F is Noether. 

PROPOSITION 7.2: I f  V C [~-~r] ~ is a linear subshift and F is Noether, then 

hr(v) + - -  r .  

First of all V • C [~o],, C [~ r ] " ,  hence the expression hr (V  -L) is meaning- 

ful. By our assumption V • is a finitely generated module, so let us choose a 

{rl, r2 , . . . ,  rk} finite generator set. We need to prove that. 

lira - r -  hr(V) .  , , - + ~  IF,~I 
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In order to do so it is enough to see that 

(7) lim l~ IY~, l -  log= IY~l = 0, 

where V~ denotes the set of elements in V • supported in F~. Remember that 

V• denotes the restrictions of the elements of V • therefore V - u F ~ V ~ .  By 

linear algebra, 

dimF2 (VF~) + dimF~ (Vn -u) = r[F~], 

that is 

lim l ~  I V ~ l  _ r - h r ( V ) .  

Let us prove (7). Any element of V • can be written (not in a unique way !) in the 
k form Y~i=I airi, where ai E Fz[F]. Denote by D the supremum of the diameters 

k of the ri's. If supp(ai) C Fn\BD+I(OF~), for all i, then )-]i=1 airi E V~. On 
k the other hand, if supp(ai) n BD+I(F~) = 0 for all i, then )-]i=1 airi IF,= 0. 

Therefore we have the pigeon-hole estimate 

IV~l <~ IV~l  2k~B~+~(~ 

that  is 
log2 I y?~ I - log2 I y : l  

and the right hand side tends to zero. 

Now we prove the density property. 

PROPOSITION 7.3: If  F is Noether and V 

hr(Y) -- hr(Y~ 

< krBD+l(OFn) 

- IFnl ' 

l 

C [)-]r] ~ is a linear subshift, then 

Proofi By our previous Proposition, hr(V z) = r - hr(V). Therefore hr(V • = 

r - hr(Y), where V Z is the closure of V • as [)-~O]r imbeds into [~-~'.r] ~. Using 

our previous Proposition again, 

hr((V• • = hr(V). 

If ~ E (V--Z) • then ~ is finitely supported and ~ E (V• • = V, that  is ~ C V ~ 

Therefore, 

hr(V) = hr((V• • _< hr(V ~ <_ hr(V). | 

Actually, our proofs of the last two Propositions gives a slightly stronger result: 
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PROPOSITION 7.4: Let F be Noether and let V be a linear subshift such that 

V ~ is generated by rl, r 2 , . . . ,  rk as left F2[F]-module. Denote by Vn the set of 
k 

those elements in V ~ which can be written in the form ~-]i=1 airi, where all the 

ai ' s  are supported in F, .  Then limn_~o~(log 2 [Vn[)/[Fn[ = hr(V).  

8. T h e  Y u z v i n s k i i  f o r m u l a  

Recall Yuzvinskii's additivity formula for Abelian groups [KS]. Let F ~ Z d and 

a be a F-action of continuous automorphisms on a compact metric group X. 

Suppose that  Y is a compact a-invariant subgroup; then 

(8) h~op(x) = h  atop (y )  + h~op(x/y) .  

The results of Ward and Zhang [WZ] suggest that  a similar s tatement might be 

true for general amenable actions. In our paper we prove only a very special case. 

PROPOSITION 8.1: Let Y C X C [~-]r] r be linear subshifts where F is Noether. 

Then 
h~~ + h~~ = h~~ = hr(X) ,  

where L is the usual left F-action. 

Proo~ The key observation is the following lemma. 

LEMMA 8.1: Let V C [ ~ r ]  r be a linear subshift where r is Noether. Then there 

exists a constant D such that if  ( �9 [~-']r] r and ( [BD(,~)�9 VBD(.~) for all 7 �9 F, 

then ~ �9 V. That is, linear subshitfs are of finite type for Noether groups. 

Proo~ Let V • C [~-]o]~ be the orthogonal ideal of V. It  is generated by 

r l ,  r 2 , . . . ,  r N ,  where all r i 's  are supported in B o ( l r ) .  Then ~ r V if and only if 

(~, L~(ri)) r 0 for some i and 7 E F. I t  means that  ~ IBD(~)r VSD(-r)- | 

Now we define a metric on X / Y .  If v, w �9 X let d([v], [w]) -- 2 -(~-1),  where n 

is the smallest integer such that  ( v - w )  IBD(~)r YBD(~) for some "~ �9 F~. Here D 

denotes the diameter of the joint support  of a generator system {sb  s 2 , . . . ,  SM} 

of the ideal Y• 

LEMMA 8.2: The metric d defines the pointwise convergence topology. 

Proof'. We need to prove that  d([vn] , 0) --4 0 implies that  [vn] --+ Y in the 

factor topology of X / Y  (the converse is obvious). Suppose that  {[vn]} does not 

converge to Y in the factor topology. Then there exists a subsequence v~ k such 
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that Vnk "+ V ~ Y in the convergence topology of [~-~r] ~. But then there exists 

a ball BD("/) such that vnk IBD(~)~ YBD(~) for large k. This contradicts the 

a s s u m p t i o n  t h a t  d([vnk], O) -+ O. | 

Now let us turn back to the proof of our Proposition. Similarly to Proposition 

3.2 we have a lower estimate for Sx/y(n, 1) in the d-metric. Let us denote by G~ 

the set of elements in Y• which can be written in the form m such that ~-~i---- 1 CiSi 
all the ci's are supported in F~. Denote by Hn the set of those elements of [}-~r] ~ 

which are supported on BD(Fn) and orthogonal to Gn. Then by Propositions 

7.3 and 7.4, (log 2 IHnD/IF~I --+ hr(Y). We have the following inequality: 

kn = IXBD<F II/IHn n XBD<Fnll 8X/y(n, 1). 

Indeed, there exist kn elements of XBD(Fn) such that their pairwise differences 

xi - x j  ~ Ha, thus ( x i -  xj,L-~sk} 7 s 0 for some sk and 3' C Fn. Hence 
d(L.wl ([x/]), L~-I ([xj]) = 1. Consequently, hr(X) - hr(Y) < htL~ Now 

fix an e and let BR(lr)  D Fm, where 2 -m < e. Then obviously 

sx /y  (n, < 
[XBo+.(F~)[ 

IYB +,(Fn/I ' 

which implies the converse inequality h r ( X ) -  h r ( r )  _> htL~ 

9. B e t t i  n u m b e r s  

In this section we define an analogue of the L2-Betti numbers. Let K be a regular, 
normal F-covering of a finite simplicial complex K,  where F is an amenable group 

that  acts freely and simplicially on /~ and K / F  = K. We have the ordinary 

cochain complex of F2-coefficients over/~': 

C~ ~r CI (K,  F2) ~ . . .  d2-~ 1 cn(~ ' ,F2) .  

Then the p-cochain space CP(h ", F2) is F-isomorphic to [~r ]  IKpl, where Kp de- 

notes the set of p-simplices in K.  We define the p-th entropy Betti number/~E(K) 

as hr(Kerdp) - hr(Imdp_l). The following theorem is the analogue of Cohen's 

theorem [3]. 

P ROPOSITION 9.1: )-~p=O (-- 1)Pb p (K) equals the Euler-characteristics of K. 

Proof'. By Proposition 5.1, 

bPE(K) = hr(Ker dp) + hr(Ker dp_l) - hr(C p-l(f(,  F2)). 
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Summing up these equations for all p with alternating signs we obtain 
m n 

E(--1)PbPE(K) = E(-1)P[Kpl---- e(K). | 
p=O p=O 

Now let us see the new proof of the result of Cheeger and Gromov. 

PROPOSITION 9.2: If  K is contractible, then all entropy Betti numbers are 

vanishing. 

The proof is much easier than for the L2-Betti numbers. If p > 0, then 

F2-cohomologies are vanishing, therefore bP(K) = 0 if p > 0. If p = 0, then 

the cocycle space is finite so the entropy Betti number must be zero. | 

COROLLARY 9.1: If  K is a finite acyclic simplicial complex with an amenable 
fundamental group, then its Euler characteristic is zero. 

Now we prove the analogue of the result of Dodziuk and Mathai. 

PROPOSITION 9.3: 

bPE(K) = lim dimF2 HP(L~,F2) 
n--+ee ]Fn] ' 

where {Ln} is an exhaustion of Ix" spanned by the Fc~lner-sets. 

Remark: Since direr2 HP(Ln, F2) _> dimR HP(Ln, R), the entropy Betti num- 

bers are at least as large as the corresponding L2-Betti numbers. It is easy to 

construct examples, where some entropy Betti numbers are strictly larger than 

the corresponding L2-Betti number (cf. the remark after Proposition 10.1). 

Proof of Proposition 9.3: First note again that CP(K, F2) ~ [~r]lKPl- Denote 

by R a constant such that for any [(%p), (5, q)] 1-simplex of K,  dr(7,5) < R. 
Now we can build an extended configuration for Ker dp and Im dp in the following 
way. Let S(A) be the simplicial complex spanned by vertices of the form (%p), 

where 7 C B2n(A) and p E I(o. Also, let Ln be the simplicial complex spanned 

by the vertices with first coordinate in Fn. Consider the coboundary operator as 

[~r ]  IKpl -~ [~r ]  IKp+ll. Let dp(A) be the space of those functions in [~r ]  IKpl 

which are supported on A and are the restriction of a cocycle of S(A); respectively 

let Bp(A) be the space of restrictions of coboundaries of S(A). Obviously, Ap(A) 

is an extended configuration of Ker dp and Bp(A) is an extended configuration of 

Imdp. Then the usual pigeon-hole argument and Proposition 4.1 imply that 

hr(Kerdp) = lim dimF2(ZP(S(Fn))) hr(Imdp) = lim dimF2(BB(S(Fn))) 
IFnl  ' IFnl  ' 
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where Z p resp. B p denote the space of eocycles resp. coboundaries. Therefore 

bP(K) = lim dimx%(HP(S(Fn),F2)) 
IFnl 

Finally, we must prove that  

lim dimF~ (HP(S(F,O, F2)) - dimF~ (HP(Ln, F2)) = 0. 

Note that it follows from the long exact cohomology sequence induced by the 

inclusion Ln ~ S(Fn) and the obvious fact that (dimF~ (HP(S(Fn), Ln, F2))/IFnl 
tends to zero as n --+ cx~. II 

10. Towers  a n d  f ixed po in t s  

In this section we recall some ideas of Farber [7]. Let F be a finitely generated 

residually-2 group. That  is, there exists a chain of normal subgroups of prime 

power index, F D F1 D F2 D -.-, where N~=IPJ = {lr} .  Let /~ /F = K be 

as in the previous section. Then one can consider the tower of finite simpli- 

cial complexes Xi = K/Fi.  Note that Xi is a simplicial (F : Fi)-covering of 

K.  Farber proved ([7], Theorem 11.1) that  l imj-~(dimF2 H~(Xj,F2))/Ir: r~l 

always exists. The following conjecture is the analogue of Lfick's theorem on 

approximating the L2-Betti numbers [12]: 

CONJECTURE 10.1: I f F  is as above a residually-2 group, then 

lim dimF~ Hi(Xj ,F2)  = b~(K). 
I r  : 

PROPOSITION 10.1: The conjecture is true f fF  is free Abelian. 

Proof: First of all note that  if F is Noether, then any V C [~-~r] r linear subshift 

is expansive. That  is, there exists e > 0 such that if x ~ y E V, then for some 

7 E F, d(Lv(x),Lv(y)) >_ e. This is just a reformulation of Lemma 8.1. The 

following result is due to Lind, Schmidt and Ward [10]. 

PROPOSITION 10.2: If  a is an expansive Za-action by automorphisms of a 

compact Abelian group X,  then 

lim [ FixAl top 
IZa:AI~,AcZ d [Z d : A[ - ha (X) 
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where Fix A denotes the set of fixed points of the subgroup A. 

Now let us turn to the proof of Proposition 10.1. Let Z~ be the space of i- 

cocycles on Xj and Z i be the space of i-eoeyeles ,on K. Then Zj is exactly the 

set of fixed points of the subgroup Fj on Z i. (Note that  the similar state- 

ment on coboundaries would not be necessarily true.) By Proposition 10.2, 

l imj-~(dimF2 Z~)/[F : Fjl = hr(Zi) .  If C~ denotes the space of i-cochains 

on Xj and C i denotes the space of i-cochains on K,  then (dimF2 C})/IF : Fj[ = 

[Kil = hr(Ci), for all j .  By our Proposition 5.1, 

b~(K) = hr(Z i) -b hr(Z i-l)  - hr(Ci-1). 

Also, 

dimr= H' (Xj, F2) = dimF2 (Zj) + dimF2 (Z~- 1) _ dimF2 (Cj- 1). 
Hence our Proposition follows. | 

It is not hard to construct a / ~ ,  where for some p the entropy and L2-Betti 

numbers differ. Simply consider the Cayley graph of Z d and then just stick a 

R P  4 on each vertex. Then if Ln denote the approximative complexes for some 
F~lner-exhaustion, 

H4(Ln, F2) 
b4(K) = lim dimF2 -- 1 

and 
H4(Ln,R) 

L(2)b4(K) = li~m~ IFnl - o. 

11. T h e  G r o t h e n d i e c k  g r o u p  a n d  t h e  in tegra l i ty  of  t h e  B e t t i  n u m b e r s  

First we recall the notion of the Grothendieck group of a non-commutative ring 
R [18]. Let G(R) be the Abelian group, defined by generators {[M]}, where the 

M's are the finitely generated left R-modules up to isomorphism. The relations 

are in the form [M] + IN] =- [L], for any exact sequence 0 --+ M -+ L --+ N --+ 0. 

Lfiek [13] proved that  if R = C[F], where F is amenable, then [C[F]] generates 

an infinite cyclic subgroup in G(R). 

PROPOSITION 11.1:[F2 [F]] generates an infinite cyclic subgroup in G(F2 [I~]) for 
any finitely generated amenable group F. 

Proof: It is enough to define a rank on finitely generated F2[F]-modules, such 

that rk([F2[r]]) = 1 and rk([M]) + rk([N]) = rk([L]) if 

O--+ M J+ L ~ N-+ O. 
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Let rk(M) = hr(M).  Now apply Proposition 5.1 for the subshifts 

Isr. J. Math. 

and the additivity follows. | 

Linnell [11] proved that  all L2-Betti numbers are integers for torsion-free 

elementary amenable group F. We can prove the following proposition. 

PROPOSITION 11.2: I fF  is poly-infinite-cyclic, then hr(V) is an integer for any 

linear subshift V. 

Proo~ Let M = V be the dual F2[F]-module of our subshift. Then, by Theorem 

3.13 [17], M has a finite resolution by finitely generated projective modules: 

O--+ M n - + " ' - - +  M~-+ Ma--+ M--+ O. 

Then, as we pointed out earlier, the dual sequence 

O ~ V--~ V~-~ V 2 - ~ . . . - ~  V,~-~ O 

is an exact sequence of linear subshiffs and continuous homomorphisms, where 

Vi = Mi. By Proposition 5.1 it is enough to show that all the hr(V~)'s are 

integers. By a result of Grothendieck and Serre (Theorem 4.13 [17]), if F is poly- 
infinite-cyclic, then all finitely generated, projective F2[F]-modules are stably 

free. Hence, using the notation of the previous section, 

h r ( E )  = r k ( Q )  = r k ( ( F 2 [ r ] )  n )  - r k ( ( F u [ P ] )  "~) = n - m 

is an integer. | 
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