

AMENABLE GROUPS, TOPOLOGICAL ENTROPY AND BETTI NUMBERS

BY

GÁBOR ELEK*

Alfred Renyi Mathematical Institute of the Hungarian Academy of Sciences

P.O. Box 127, H-1364 Budapest, Hungary

e-mail: elek@renyi.hu

ABSTRACT

We investigate an analogue of the L^2 -Betti numbers for amenable linear subshifts. The role of the von Neumann dimension shall be played by the topological entropy.

1. Introduction

Let Γ be a finitely generated group. Then the Hilbert space $l^2(\Gamma)$ has a natural left Γ -action by translations:

$$L_\gamma(f)(\delta) = f(\gamma^{-1}\delta).$$

Using the so-called von Neumann dimension we can assign a real number to any Γ -invariant linear subspace of $[l^2(\Gamma)]^n$, $n \in \mathbf{N}$ satisfying the following basic axioms [16].

1. **Positivity:** If $V \subset [l^2(\Gamma)]^n$ Γ -invariant linear subspace, then $\dim_\Gamma(V) \geq 0$.
Also, $\dim_\Gamma(V) = 0$ if and only if $V = 0$.
2. **Invariance:** If $V \subset [l^2(\Gamma)]^n$, $W \subset [l^2(\Gamma)]^m$ and T is a Γ -equivariant isomorphism from V to a dense subset of W , then $\dim_\Gamma(V) = \dim_\Gamma(W)$.
3. **Additivity:** If Z is the orthogonal direct sum of V and W , then $\dim_\Gamma(Z) = \dim_\Gamma(V) + \dim_\Gamma(W)$.

* Partially supported by OTKA grant T 25004 and the Bolyai Fellowship.

Received December 1, 1999

4. **Continuity:** If $V_1 \supset V_2 \supset \dots$ is a decreasing sequence of Γ -invariant linear subspaces, then

$$\dim_{\Gamma} \left(\bigcap_{j=1}^{\infty} V_j \right) = \lim_{j \rightarrow \infty} \dim_{\Gamma}(V_j).$$

5. **Normalization:** $\dim_{\Gamma}[l^2(\Gamma)] = 1$.

There is an important application of the von Neumann dimension in algebraic topology due to Atiyah [1] (see also [4]). He defined certain invariants of finite simplicial complexes: the L^2 -Betti numbers. The idea is the following. Let \tilde{K} be an infinite, simplicial complex with a free and simplicial Γ -action as covering transformations such that $\tilde{K}/\Gamma = K$ is finite. Denote by $C_{(2)}^p(\tilde{K})$ the Hilbert space of square-summable, real p -cochains of \tilde{K} . Then one has the following differential complex of Hilbert spaces,

$$C_{(2)}^0(\tilde{K}) \xrightarrow{d_0} C_{(2)}^1(\tilde{K}) \xrightarrow{d_1} \dots \xrightarrow{d_{n-1}} C_{(2)}^n(\tilde{K}),$$

where the d_p 's are the usual coboundary operators.

Note that $C_{(2)}^p(\tilde{K}) \cong [l^2(\Gamma)]^{|K_p|}$, where K_p denotes the set of p -simplices in K . Atiyah's L^2 -Betti numbers are defined as

$$L_{(2)}b^p(K) = \dim_{\Gamma} \text{Ker } d_p - \dim_{\Gamma} \text{Im } d_{p-1}.$$

Let us list some basic results on the L^2 -Betti numbers.

- (Dodziuk, [4]) If \tilde{K} and \tilde{L} are homotopic by a Γ -invariant homotopy, then the corresponding L^2 -Betti numbers of $\tilde{K}/\Gamma = K$ and $\tilde{L}/\Gamma = L$ are equal.
- (Cohen, [3])

$$\sum_{p=0}^n (-1)^p L_{(2)}b^p(K) = e(K),$$

the Euler characteristic of K .

- (Cheeger and Gromov, [2]) If \tilde{K} is contractible and Γ is amenable, then all L^2 -Betti numbers are vanishing.
- (Linnell, [11]) If Γ is elementary amenable and torsion-free, then all L^2 -Betti numbers are integers.
- (Lück, [12]) Let Γ be residually finite and

$$\Gamma \supset \Gamma_1 \supset \Gamma_2 \supset \dots, \quad \bigcap_{i=1}^{\infty} \Gamma_i = 1_{\Gamma}$$

normal subgroups of finite index and let $X_i = \tilde{K}/\Gamma_i$ be the corresponding finite coverings of K . Then

$$L_{(2)} b^p(K) = \lim_{i \rightarrow \infty} \frac{\dim_{\mathbf{R}} H^p(X_i, \mathbf{R})}{|\Gamma : \Gamma_i|}.$$

- (Dodziuk and Mathai [5]) If $\{L_n\}_{n=1}^{\infty}$ is an exhaustion of \tilde{K} by finite simplicial complexes spanned by a $\{F_n\}_{n=1}^{\infty}$ Følner-exhaustion, then

$$L_{(2)} b^p(K) = \lim_{i \rightarrow \infty} \frac{\dim_{\mathbf{R}} H^p(L_n, \mathbf{R})}{|F_n|}.$$

Note that the second and the third results together imply that if K is an acyclic simplicial complex with amenable fundamental group, then its Euler characteristic is zero [2]. Another interesting application is due to Lück: If Γ is amenable, then the group algebra $\mathbf{C}[\Gamma]$ as a free module over itself generates an infinite cyclic subgroup in the Grothendieck group of $\mathbf{C}[\Gamma]$ [13].

The analogue setting we are investigating in this paper is the following. Let Γ be a finitely generated amenable group (see [6] why amenability is crucial). We denote by \sum_{Γ} the full Bernoulli shift that is the linear space of \mathbf{F}_2 -valued functions on Γ , where \mathbf{F}_2 is the field of two elements. The space \sum_{Γ} is a compact, metrizable space in the pointwise convergence topology equipped with the natural left Γ -action by translations. A space $V \subset [\sum_{\Gamma}]^n$ is a linear subshift if it is linear as a \mathbf{F}_2 -vector space, closed in the topology and invariant with respect to the Γ -action. The notion of dimension is the topological entropy of the linear subshifts. This is well-known for \mathbf{Z} and \mathbf{Z}^d -actions and somehow less-known for general amenable group actions (nevertheless see [14]). We shall observe that our dimension h_{Γ} satisfies similar axioms as \dim_{Γ} :

1. **Nonnegativity:** For any V linear subshift : $h_{\Gamma}(V) \geq 0$. But it can be zero even if V is not zero.
2. **Monotonicity:** If $V \subset W$, then $h_{\Gamma}(V) \leq h_{\Gamma}(W)$.
3. **Invariance:** If $T : V \rightarrow W$ continuous Γ -equivariant linear isomorphism, then $h_{\Gamma}(V) = h_{\Gamma}(W)$.
4. **Additivity:** If $Z = V \oplus W$, then $h_{\Gamma}(Z) = h_{\Gamma}(V) + h_{\Gamma}(W)$.
5. **Continuity:** If $V_1 \supset V_2 \supset \dots$ is a decreasing sequence of linear subshifts, then

$$h_{\Gamma}\left(\bigcap_{j=1}^{\infty} V_j\right) = \lim_{j \rightarrow \infty} h_{\Gamma}(V_j).$$

6. **Normalization:** $h_{\Gamma}(\sum_{\Gamma}) = 1$.

Now let \tilde{K} be as above. Then we have the ordinary cochain complex of \mathbf{F}_2 -coefficients over \tilde{K} :

$$C^0(\tilde{K}, \mathbf{F}_2) \xrightarrow{d_0} C^1(\tilde{K}, \mathbf{F}_2) \xrightarrow{d_1} \cdots \xrightarrow{d_{n-1}} C^n(\tilde{K}, \mathbf{F}_2).$$

Then the p -cochain space $C^p(\tilde{K}, \mathbf{F}_2)$ is Γ -isomorphic to $[\sum_{\Gamma}]^{|\mathcal{K}_p|}$, where \mathcal{K}_p denotes the set of p -simplices in K . We define the p -th entropy Betti number $b_E^p(K)$ as $h_{\Gamma}(\text{Ker } d_p) - h_{\Gamma}(\text{Im } d_{p-1})$. In this paper we shall prove the following analogues of the L^2 -results.

- If \tilde{K} and \tilde{L} are homotopic by a Γ -invariant homotopy and Γ is poly-cyclic, then the corresponding entropy-Betti numbers of $\tilde{K}/\Gamma = K$ and $\tilde{L}/\Gamma = L$ are equal.
- $\sum_{p=0}^n (-1)^p b_E^p(K) = e(K),$

the Euler characteristic of K .

- If \tilde{K} is contractible, then all entropy-Betti numbers are vanishing. (This is quite obvious; the point is that the corollary on the vanishing Euler-characteristic still follows from this and the previous statement.)
- If Γ is poly-infinite-cyclic, then all entropy-Betti numbers are integers.
- Let Γ be free Abelian and

$$\Gamma \supset \Gamma_1 \supset \Gamma_2 \supset \cdots, \quad \bigcap_{i=1}^{\infty} \Gamma_i = 1_{\Gamma}$$

normal subgroups of finite index and let $X_i = \tilde{K}/\Gamma_i$ be the corresponding finite coverings of K . Then

$$b_E^p(K) = \lim_{i \rightarrow \infty} \frac{\dim_{\mathbf{F}_2} H^p(X_i, \mathbf{F}_2)}{|\Gamma : \Gamma_i|}.$$

- If $\{L_n\}_{n=1}^{\infty}$ is an exhaustion of \tilde{K} by finite simplicial complexes spanned by a $\{F_n\}_{n=1}^{\infty}$ Følner-exhaustion, then

$$b_E^p(K) = \lim_{n \rightarrow \infty} \frac{\dim_{\mathbf{F}_2} H^p(L_n, \mathbf{F}_2)}{|F_n|}.$$

We shall also prove an analogue of Lück's result on the Grothendieck-group for the group algebras $\mathbf{F}_2[\Gamma]$.

2. Amenable groups and quasi-tiles

Let Γ be a finitely generated group with a symmetric generator set $\{g_1, g_2, \dots, g_k\}$. The right Cayley-graph of Γ , C_Γ , is defined as follows. Let $V(C_\Gamma) = \Gamma$, $E(C_\Gamma) = \{(a, b) \in \Gamma \times \Gamma : \text{there exists } g_i : ag_i = b\}$. The shortest path distance d of C_Γ makes Γ a discrete metric space. We shall use the following notation. If $H \subset \Gamma$ is a finite set, then $B_r(H)$ is the set of elements a in Γ such that there exists $h \in H$, $d(a, h) \leq r$. We denote $B_1(H) \setminus H$ by ∂H and $B_r(H) \setminus H$ by $\partial_r H$. An exhaustion of Γ by finite sets

$$1_\Gamma \in F_1 \subset F_2 \subset \dots, \quad \bigcup_{j=1}^{\infty} F_j = \Gamma$$

is called a Følner-exhaustion if for any $r \in \mathbf{N}$: $\lim_{n \rightarrow \infty} (|\partial_r F_n|/|F_n|) = 0$. A group Γ is called amenable if it possesses a Følner-exhaustion. Some amenable groups have **tiling** Følner-exhaustion, that is any F_n is a tile: There exists $C \subset \Gamma$ such that $\{cF_n\}_{c \in C}$ is a partition of Γ . For example, \mathbf{Z}^n has this tiling property. As observed by Ornstein and Weiss [15] **any** amenable group has quasi-tiling Følner-exhaustion. Let us recall their construction. Let $\{A_i\}_{i=1}^{\infty}$ be finite sets. Then we call them ϵ -disjoint if there exist subsets $\overline{A_i} \subset A_i$ so that $\overline{A_i} \cap \overline{A_j} = \emptyset$ if $i \neq j$, and $|\overline{A_i}|/|A_i| \geq 1 - \epsilon$ for all i . Now let B another finite set. We say that $\{A_i\}_{i=1}^{\infty}$ $(1 - \epsilon)$ -cover B , if

$$\frac{|B \cap \bigcup_{i=1}^{\infty} A_i|}{|B|} \geq 1 - \epsilon.$$

The subsets of Γ , $1_\Gamma \in T_1 \subset T_2 \subset \dots \subset T_N$, form an ϵ -quasi-tile system if for any finite subset of $A \subset \Gamma$ there exists $C_i \subset \Gamma$, $i = 1, 2, \dots, N$ such that

1. $C_i T_i \cap C_j T_j = \emptyset$ if $i \neq j$.
2. $\{cT_i : c \in C_i\}$ are ϵ -disjoint sets for any fixed i .
3. $\{C_i T_i, 1 \geq i \geq N\}$ form a $(1 - \epsilon)$ -cover of A .

The following proposition is Theorem 6 in [15]:

PROPOSITION 2.1: *If $F_1 \subset F_2 \subset \dots$ is a Følner-exhaustion of an amenable group, then for any $\epsilon > 0$ we can choose a finite subset $F_{n_1} \subset F_{n_2} \subset \dots \subset F_{n_N}$ such that they form an ϵ -quasi-tile system. The number N may depend on ϵ .*

3. The topological entropy of linear subshifts

First of all we define an averaged dimension $h_\Gamma(W)$ for linear subshifts and then we shall show that it coincides with the topological entropy. Let Γ be

a finitely generated amenable group with Følner-exhaustion $1_\Gamma \in F_1 \subset F_2 \subset \dots$, $\bigcup_{j=1}^{\infty} F_j = \Gamma$. We introduce some notations. If $\Lambda \subset \Gamma$ is a finite set, then let $[\sum_{\Lambda}]^r$ be the space of functions in $[\sum_{\Gamma}]^r$ supported on Λ . Also, $[\sum_{\Gamma}]^r$ denotes the space of finitely supported functions. Now let $W \subset [\sum_{\Gamma}]^r$ be a Γ -invariant not necessarily closed linear subspace. Then for any finite $\Lambda \subset \Gamma$, let $W_{\Lambda} \subset [\sum_{\Lambda}]^r$ be the linear space of functions η supported on Λ such that there exists $\nu \in W$: $\eta|_{\Lambda} = \nu|_{\Lambda}$.

Definition 3.1: $h_{\Gamma}(W) = \limsup_{n \rightarrow \infty} (\log_2 |W_{F_n}| / |F_n|)$

Note that $\log_2 |W_{F_n}|$ is just the dimension of the vector space W_{F_n} over the field \mathbb{F}_2 . It will be obvious from the next proposition that $h_{\Gamma}(W)$ does not depend on the particular choice of the exhaustion.

PROPOSITION 3.1: 1. $h_{\Gamma}(W) = h_{\Gamma}(\overline{W})$, where \overline{W} denotes the closure of W in the pointwise convergence topology.

2. $h_{\Gamma}(W) = \liminf_{n \rightarrow \infty} (\log_2 |W_{F_n}| / |F_n|)$, hence $\lim_{n \rightarrow \infty} (\log_2 |W_{F_n}| / |F_n|)$ always exists and equals $h_{\Gamma}(W)$.

Proof: The first part is obvious from the definition. For the second part we argue by contradiction. Suppose that

$$h_{\Gamma}(W) - \liminf_{n \rightarrow \infty} \frac{\log_2 |W_{F_n}|}{|F_n|} = \delta > 0.$$

Consider a subsequence $F_{n_1} \subset F_{n_2} \subset \dots$ such that

$$\sup_{i \rightarrow \infty} \frac{\log_2 |W_{F_{n_i}}|}{|F_{n_i}|} \leq \liminf_{n \rightarrow \infty} \frac{\log_2 |W_{F_n}|}{|F_n|} + \epsilon,$$

where the explicit value of ϵ shall be chosen later accordingly. Then pick an ϵ -quasi-tile system from our subsequence: $F_{m_1} \subset F_{m_2} \subset \dots \subset F_{m_N}$. Now we take an arbitrary F_n from the original Følner-exhaustion. By Proposition 2.1 we have an ϵ -disjoint $(1 - \epsilon)$ -covering of F_n by translates of the quasi-tile system. Denote by R_1, R_2, \dots, R_k those tiles which are properly contained in F_n . Then we have the following estimate,

$$(1) \quad |W_{F_n}| \leq 2^{(r\epsilon|F_n| + r|F_n \setminus B_{D+1}(\partial F_n)|)} \prod_{i=1}^k |W_{R_i}|,$$

where D is the diameter of the largest tile F_{m_N} . The inequality (1) follows from the fact that a function $\xi \in W_{F_n}$ is uniquely determined by its restrictions on the covering tiles and its restriction on the uncovered elements. The latter

one consists of two parts: the elements which are not covered at all by the original covering and the elements which are covered only by tiles intersecting the complement of F_n . These “badly” covered elements must be in a $(D + 1)$ -neighbourhood of the boundary of F_n . Also, by ϵ -disjointness we have the estimate

$$(2) \quad \sum_{i=1}^k |R_i| \leq \frac{1}{1-\epsilon} |F_n|.$$

Therefore,

$$|W_{F_n}| \leq 2^{(r\epsilon|F_n| + r|F_n \setminus B_{D+1}(\partial F_n)|)} 2^{\frac{1}{1-\epsilon}(h_\Gamma - \delta + \epsilon)|F_n|}.$$

Hence,

$$(3) \quad \frac{\log_2 |W_{F_n}|}{|F_n|} \leq r\epsilon + \frac{r|F_n \setminus B_{D+1}(\partial F_n)|}{|F_n|} + \frac{1}{1-\epsilon}(h_\Gamma - \delta + \epsilon).$$

Consequently, if we choose ϵ small enough, then for large n ,

$$\frac{\log_2 |W_{F_n}|}{|F_n|} \leq h_\Gamma - \frac{\delta}{2},$$

leading to a contradiction. \blacksquare

Now we recall the notion of topological entropy. Let Γ be an amenable group as above and let X be a compact metric space equipped with a continuous Γ -action; $\alpha: \Gamma \rightarrow \text{Homeo}(X)$. Instead of the original definition of Moulin Ollagnier [14] we use the equivalent “spanning-separating” definition, that is a direct generalization of the Abelian case [20]. We call a finite set $S \subset X$ (n, ϵ) -separating if for any distinct points $s, t \in S$ there exists $\gamma \in F_n$ such that $d(\alpha(\gamma^{-1})(s), \alpha(\gamma^{-1})(t)) > \epsilon$. We denote by $s(n, \epsilon)$ the maximal cardinality of such sets. We call a finite set $R \subset X$ (n, ϵ) -spanning if for any $x \in X$ there exists $y \in R$ such that $d(\alpha(\gamma^{-1})(x), \alpha(\gamma^{-1})(y)) \leq \epsilon$, for all $\gamma \in F_n$. We denote by $r(n, \epsilon)$ the minimal cardinality of such sets. Obviously, if $\epsilon' < \epsilon$ then $s(n, \epsilon') \geq s(n, \epsilon)$, $r(n, \epsilon') \geq r(n, \epsilon)$. Also, we have the inequalities

$$r(n, \epsilon) \leq s(n, \epsilon) \leq r(n, \epsilon/2).$$

Indeed, any maximal (n, ϵ) -separating set is (n, ϵ) -spanning. On the other hand if $R = x_1, x_2, \dots, x_k$ is a minimal $(n, \epsilon/2)$ -spanning set, then

$$X = \bigcup_{i=1}^k D(x_i, n, \epsilon/2),$$

where

$$D(x_i, n, \varepsilon/2) = \{y \in X: d(\alpha(\gamma^{-1})(x), \alpha(\gamma^{-1})(y)) \leq \varepsilon/2, \text{ for all } \gamma \in F_n\}.$$

Any $D(x_i, n, \varepsilon/2)$ can contain at most one element of a (n, ε) -separating set, hence $s(n, \varepsilon) \leq r(n, \varepsilon/2)$.

Consequently,

$$\lim_{\epsilon \rightarrow 0} \limsup_{n \rightarrow \infty} \frac{\log_2 r(n, \epsilon)}{|F_n|} = \lim_{\epsilon \rightarrow 0} \limsup_{n \rightarrow \infty} \frac{\log_2 s(n, \epsilon)}{|F_n|}.$$

This joint limit is called the topological entropy of the Γ -action and denoted by $h_\alpha^{\text{top}}(X)$.

PROPOSITION 3.2: *Let $V \subset [\sum_\Gamma]^r$ be a linear subshift. Then $h_L^{\text{top}}(V) = h_\Gamma(V)$.*

Proof: First we fix a metric on V that defines the pointwise convergence topology. If $v, w \in V$, then let $d_V(v, w) = 2^{-(n-1)}$, where n is the infimum of k 's such that $v|_{F_k} \neq w|_{F_k}$. First note that $|V_{F_n}| \leq s(n, 1)$. Indeed if v_1, v_2, \dots, v_s is a subset of V such that $v_i|_{F_n} \neq v_j|_{F_n}$ when $i \neq j$, then there exists $\gamma \in F_n$ such that $L_{\gamma^{-1}}v_i(1_\Gamma) \neq L_{\gamma^{-1}}v_j(1_\Gamma)$. Fix an ϵ and choose $K_\epsilon, M_\epsilon \in \mathbf{N}$ such that $\epsilon > 2^{-K_\epsilon}$ and $F_{K_\epsilon} \subset B_{M_\epsilon}(1_\Gamma)$. Then we claim that $s(n, \epsilon) \leq |V_{B_{M_\epsilon}(F_n)}|$. Indeed, if $x|_{B_{M_\epsilon}(F_n)} = y|_{B_{M_\epsilon}(F_n)}$, then for any $\gamma \in F_n$, $d_V(L_{\gamma^{-1}}(x), L_{\gamma^{-1}}(y)) \leq 2^{-K_\epsilon} < \epsilon$. Hence if $\epsilon < 1$,

$$h_\Gamma(V) = \lim_{n \rightarrow \infty} \frac{\log_2 |V_{F_n}|}{|F_n|} \leq \log_2 (s(n, \epsilon)) \leq \lim_{n \rightarrow \infty} \frac{\log_2 |V_{B_{M_\epsilon}(F_n)}|}{|F_n|} = h_L^{\text{top}}(V). \quad \blacksquare$$

4. Extended configurations

The notion of extended configuration is due to Ruelle in a slightly different form. Again we start with a linear subshift $V \subset [\sum_\Gamma]^r$. For any $\Lambda \subset \Gamma$ finite set let $V_\Lambda^\Omega \subset [\sum_\Lambda]^r$ be a finite dimensional linear subspace satisfying the following axioms:

- **Extension:** $V_\Lambda \subset V_\Lambda^\Omega$.
- **Invariance:** $V_{\gamma\Lambda}^\Omega = L_\gamma(V_\Lambda^\Omega)$.
- **Transitivity:** If $\Lambda \subset M$, then for any $\xi \in V_M^\Omega$ there exists $\mu \in V_\Lambda^\Omega$ such that $\xi|_\Lambda = \mu|_\Lambda$.
- **Determination:** If $\xi \in [\sum_\gamma]^r$ and for any $\Lambda \subset \Gamma$ finite there exists $\xi_\Lambda \in V_\Lambda^\Omega$ such that $\xi|_\Lambda = \xi_\Lambda$, then $\xi \in V$.

We call such a system an extended configuration of V . Its topological entropy is defined as $h_\Gamma^\Omega(V) = \limsup_{n \rightarrow \infty} |V_{F_n}^\Omega|/|F_n|$.

PROPOSITION 4.1: $h_\Gamma^\Omega(V) = h_\Gamma(V)$ (compare to Theorem 3.6 [19])

Proof: Let us suppose that $h_\Gamma^\Omega(V) - h_\Gamma(V) = \delta > 0$. Again choose an ϵ -quasi-tile system $F_{n_1}, F_{n_2}, \dots, F_{n_N}$ such that $|V_{F_{n_i}}| < 2^{(h_\Gamma + \epsilon)|F_{n_i}|}$, where the explicit value of ϵ will be given later. Denote by $V_{F_{n_i}}^k$ the space of functions μ in $V_{F_{n_i}}$ such that there exists $\xi \in V_{B_k(F_{n_i})}^\Omega$ with $\xi|_{F_{n_i}} = \mu|_{F_{n_i}}$. By Extension and Determination properties it is easy to see that for large p

$$(4) \quad V_{F_{n_i}}^p = V_{F_{n_i}},$$

where $1 \leq i \leq N$. Let us pick a large p . Then we can proceed almost the same way as in the previous section. Denote by R_i , $1 \leq i \leq k$ those translates in the ϵ -disjoint $(1 - \epsilon)$ -covering of a Følner-set F_n such that not only the R_i 's but even the $B_p(R_i)$ balls are contained in F_n . Then by Transitivity we have the following estimate,

$$|V_{F_n}^\Omega| \leq 2^{(r\epsilon|F_n| + r|F_n \setminus B_{p+D+1}(\partial F_n)|)} \prod_{i=1}^k |V_{R_i}^p|.$$

That is by Invariance, (2) and (4),

$$\frac{\log_2 |V_{F_n}^\Omega|}{|F_n|} \leq r\epsilon + \frac{r|F_n \setminus B_{p+D+1}(\partial F_n)|}{|F_n|} + \frac{1}{1 - \epsilon}(h_\Gamma^\Omega - \delta + \epsilon)$$

which leads to a contradiction provided that we choose ϵ small enough. \blacksquare

5. Basic properties

Now we are in a position to prove the basic properties of h_Γ as stated in the Introduction. The Monotonicity, Normalization and Positivity axioms are obviously satisfied.

LEMMA 5.1: *Let $V, W \subset [\sum_\Gamma]^r$ be linear subshifts such that $V \cap W = 0$. Then $h_\Gamma(V) + h_\Gamma(W) = h_\Gamma(V \oplus W)$.*

Proof: First note that just because $V \cap W$ is the zero subspace it is not necessarily true that $V_\Lambda \cap W_\Lambda = 0$ as well. However, we can prove that $N_\Lambda^\Omega = V_\Lambda \cap W_\Lambda$ is an extended configuration of the zero subspace. We only need to show that the Determination axiom is satisfied. Suppose $\xi \in [\sum_\Gamma]^r$ such that $\xi|_{F_n} \in V_{F_n} \cap W_{F_n}$. Then there exists $v_n \in V, w_n \in W$ such that $\xi|_{F_n} = v_n|_{F_n} = w_n|_{F_n}$. Hence $v_n \rightarrow \xi, w_n \rightarrow \xi$ in the topology of $[\sum_\Gamma]^r$. The spaces V and W are closed, thus $\xi \in V \cap W$, hence $\xi = 0$. By elementary linear algebra,

$$\dim_{\mathbf{F}_2}(V \oplus W)_\Lambda + \dim_{\mathbf{F}_2} N_\Lambda^\Omega = \dim_{\mathbf{F}_2} V_\Lambda + \dim_{\mathbf{F}_2} W_\Lambda.$$

Hence by our Proposition 4.1 our Lemma follows. \blacksquare

Now we prove a property of the entropy that is slightly more general than invariance.

PROPOSITION 5.1: *Let $T: V \rightarrow W$ be a continuous Γ -equivariant linear map between linear subshifts $V \subset [\sum_{\Gamma}]^r, W \subset [\sum_{\Gamma}]^r$. Then $h_{\Gamma}(\text{Ker } T) + h_{\Gamma}(\text{Im } T) = h_{\Gamma}(V)$.*

Proof: First of all let us note that by the compactness of V and the continuity of T both $\text{Ker } T$ and $\text{Im } T$ are linear subshifts. Now let us consider the natural right action of $\mathbf{F}_2(\Gamma)$ on $[\sum_{\Gamma}]^r$, $R_{\gamma}f(x) = f(x\gamma)$. This action obviously commutes with our previously defined left Γ -action. The right action can be extended to $s \times r$ matrices with coefficients in $\mathbf{F}_2(\Gamma)$ acting on the column vectors $[\sum_{\Gamma}]^r$. Obviously, any such matrix M defines a Γ -equivariant map; $T_M: [\sum_{\Gamma}]^r \rightarrow [\sum_{\Gamma}]^s$.

LEMMA 5.2: *Any continuous Γ -equivariant linear map $T: V \rightarrow W$ can be given via multiplication by some $s \times r$ matrix T_M with coefficients in $\mathbf{F}_2(\Gamma)$.*

Proof: Since T is uniformly continuous the value of $T(v)(1_{\Gamma})$ is determined by the value of v on a finite ball B , where B does not depend on v . Hence for any $1 \leq i \leq s$

$$T(v)(1_{\Gamma}) = \sum_{\gamma \in B} \sum_{j=1}^r c_{ij}^{\gamma} \cdot v_j(\gamma),$$

where $c_{ij}^{\gamma} \in \mathbf{F}_2$. By $\{T_M\}_{ij} = \{\sum_{\gamma \in B} c_{ij}^{\gamma} \gamma\} \in \text{Mat}_{s \times r}(\mathbf{F}_2[\Gamma])$ define a $s \times r$ matrix. Then for any $v \in V, T_M(v)(1_{\Gamma}) = T(v)(1_{\Gamma})$. Hence by the Γ -equivariance of the matrix multiplication

$$\begin{aligned} T_M(v)(\gamma) &= L_{\gamma^{-1}}(T_M(v))(1_{\Gamma}) = T_M(L_{\gamma^{-1}}(v))(1_{\Gamma}) \\ &= T(L_{\gamma^{-1}}(v))(1_{\Gamma}) = T(v)(\gamma). \end{aligned} \quad \blacksquare$$

Now we return to the proof of our Proposition. We denote by T_M the matrix and by k the diameter of the ball B defined in our Lemma. Let

$$N_{\Lambda}^{\Omega} =$$

$$\{v \in [\sum_{\Lambda}]^r : \text{there exists } z \in V_{B_k(\Lambda)}, \text{ such that } z|_{\Lambda} = v|_{\Lambda} \text{ and } T(z)|_{\Lambda} = 0\}$$

and

$$M_{\Lambda}^{\Omega} = \{w \in [\sum_{\Lambda}]^s : \text{there exists } z \in V_{B_k(\Lambda)}, \text{ such that } T(z)|_{\Lambda} = w|_{\Lambda}\}.$$

Then N_Λ^Ω is an extended configuration of $\text{Ker } T_M$, M_Λ^Ω is an extended configuration of $\text{Im } T_M$. Let $\tilde{T}_\Lambda: V_{B_k(\Lambda)} \rightarrow [\sum_\Lambda]^s$ be the restriction of T onto Λ . Then $\text{Im } \tilde{T}_\Lambda = M_\Lambda^\Omega$. We have the usual pigeon-hole estimate:

$$(5) \quad |N_{F_n}^\Omega| \leq |\text{Ker } \tilde{T}_{F_n}| \leq |N_{F_n}^\Omega| 2^{r|B_k(\partial F_n)|}.$$

Also, by linear algebra we obtain

$$\dim_{\mathbf{F}_2} \text{Ker } \tilde{T}_{F_n} + \dim_{\mathbf{F}_2} \text{Im } \tilde{T}_{F_n} = \dim_{\mathbf{F}_2} V_{B_k(F_n)},$$

that is

$$(6) \quad \log_2 |\text{Ker } \tilde{T}_{F_n}| + \log_2 |\text{Im } \tilde{T}_{F_n}| = \log_2 |V_{B_k(F_n)}|.$$

It is easy to see that (5) and (6) together imply the statement of our Proposition. ■

Now we prove the Continuity property.

PROPOSITION 5.2: *If $V^1 \supset V^2 \supset \dots$ is a decreasing sequence of linear subshifts, then*

$$h_\Gamma\left(\bigcap_{j=1}^{\infty} V^j\right) = \lim_{j \rightarrow \infty} h_\Gamma(V^j).$$

Proof: For any $k \in N$, $V^k \supset \bigcap_{j=1}^{\infty} V^j$. Hence

$$h_\Gamma\left(\bigcap_{j=1}^{\infty} V^j\right) \leq \lim_{j \rightarrow \infty} h_\Gamma(V^j).$$

We need to prove the converse inequality. Suppose that for all j , $h_\Gamma(V^j) \geq h_\Gamma\left(\bigcap_{j=1}^{\infty} V^j\right) + 2\epsilon$. Let $T(j)$ be a monotone increasing function such that

$$\frac{\log_2 |V_{F_s}^j|}{|F_s|} \geq h_\Gamma\left(\bigcap_{j=1}^{\infty} V^j\right) + \epsilon,$$

when $s \geq T(j)$. We define a monotone non-decreasing function $S: \mathbf{N} \rightarrow \mathbf{N}$ such that $S(n) = 1$ if there is no such j so that $T(j) \leq n$, and

$$S(n) = \max\{j : T(j) \leq n\}$$

otherwise. Then $S(n) \rightarrow \infty$ as $n \rightarrow \infty$. Define $V_\Lambda^\Omega = V_\Lambda^{S(n)}$, where n is the smallest integer such that $|F_n| \geq |\Lambda|$. It is easy to see that V_Λ^Ω is an extended configuration of $\bigcap_{j=1}^{\infty} V^j$. Therefore, $(\log_2 |V_{F_n}^\Omega|)/|F_n| \rightarrow h_\Gamma\left(\bigcap_{j=1}^{\infty} V^j\right)$. On the other hand, by our construction $(\log_2 |V_{F_n}^\Omega|)/|F_n| \geq h_\Gamma\left(\bigcap_{j=1}^{\infty} V^j\right) + \epsilon$, leading to a contradiction. ■

6. Pontryagin duality

In this section we recall the Pontryagin duality theory [8]. Let A be a locally compact Abelian group and let \widehat{A} be its dual, that is the group of continuous homomorphisms $\chi: A \rightarrow S^1 = \{z \in C: |z| = 1\}$. According to the duality theorem A is naturally isomorphic to its double dual. The relevant example for us is $A = [\sum_{\Gamma}]^r$; its dual is $[\sum_{\Gamma}^0]^r$ the group of finitely supported elements, where $\langle \chi, f \rangle = \sum_{\gamma \in \Gamma} (\chi(\gamma), f(\gamma))$ for $\chi \in [\sum_{\Gamma}^0]^r$ and $f \in [\sum_{\Gamma}]^r$. Here (a, b) is defined as $\sum_{i=1}^r a_i b_i$. The additive group of \mathbf{F}_2 is viewed as the subgroup $\{-1, 1\} \in S^1$. If $H \subset [\sum_{\Gamma}]^r$ is a compact subgroup, then

$$H^{\perp} = \{\chi \in [\sum_{\Gamma}^0]^r : \langle \chi, h \rangle = 1 \text{ for any } h \in H\}.$$

Conversely, if $B \subset [\sum_{\Gamma}]^r$ is a subgroup then

$$B^{\perp} = \{f \in [\sum_{\Gamma}]^r : \langle \chi, f \rangle = 1 \text{ for any } \chi \in B\}.$$

Then $(H^{\perp})^{\perp} = H$, $(B^{\perp})^{\perp} = B$. If A, B locally compact groups and $\psi: A \rightarrow B$ continuous homomorphisms, then its dual $\widehat{\psi}: \widehat{B} \rightarrow \widehat{A}$ is defined by $\langle \widehat{\psi}(\chi), a \rangle = \langle \chi, \psi(a) \rangle$. Again the double dual of ψ is itself if A and B are both compact or both discrete. Then ψ is injective resp. surjective if and only if $\widehat{\psi}$ is surjective (resp. injective). Moreover, if we have a short exact sequence of compact or discrete groups

$$1 \rightarrow A_1 \rightarrow A_2 \rightarrow \cdots \rightarrow A_n \rightarrow 1,$$

then its dual sequence

$$0 \rightarrow \widehat{A}_n \rightarrow \cdots \rightarrow \widehat{A}_2 \rightarrow \widehat{A}_1 \rightarrow 0$$

is also exact. The next proposition is a version of a result of Kitchens and Schmidt [9].

PROPOSITION 6.1: *The Pontryagin duality provides a one-to-one correspondence between linear subshifts and finitely generated left $\mathbf{F}_2[\Gamma]$ -modules.*

Proof: First note that if L_{γ} is the left multiplication by γ on $[\sum_{\Gamma}]^r$, then \widehat{L}_{γ} is the left multiplication by γ^{-1} on $[\sum_{\Gamma}^0]^r$. Hence if $V \xrightarrow{i} [\sum_{\Gamma}]^r$ is the natural imbedding of a linear subshift, then $(\mathbf{F}_2[\Gamma])^r \cong [\sum_{\Gamma}^0]^r \xrightarrow{i^*} \widehat{V}$ is a surjective $\mathbf{F}_2[\Gamma]$ -module homomorphism, that is \widehat{V} is a finitely generated left $\mathbf{F}_2[\Gamma]$ -module. Conversely, the dual of a finitely generated $\mathbf{F}_2[\Gamma]$ -module is a linear subshift. It is

important to note that if $V \subset [\sum_{\Gamma}]^r$, $W \subset [\sum_{\Gamma}]^s$ are isomorphic linear subshifts, then the dual of this isomorphism provides a module-isomorphism between \widehat{W} and \widehat{V} . Conversely, the duals of isomorphic modules are isomorphic linear subshifts.

■

7. The Noether property of group algebras

Let $V \subset [\sum_{\Gamma}]^r$ be a linear subshift. We denote by V^0 the subspace of finitely supported elements.

PROPOSITION 7.1: *If V^0 contains a non-zero element then $h_{\Gamma}(V^0) > 0$.*

Proof: Let us suppose that a ball $B_r(1_{\Gamma})$ contains the support of a non-zero element in V^0 . We claim that there exists an $\epsilon > 0$ such that if n is large enough, then F_n contains at least $\epsilon|F_n|$ disjoint translates of $B_r(1_{\Gamma})$. First note that the claim implies our Proposition. If we have M_n translates of $B_r(1_{\Gamma})$ in F_n , then we can find 2^{M_n} different elements of V^0 which are all supported in F_n . Therefore

$$\frac{\log_2 |V_{F_n}|}{|F_n|} \geq \frac{M_n}{|F_n|} \geq \frac{\epsilon|F_n|}{|F_n|} = \epsilon.$$

Hence $h_{\Gamma}(V^0) \geq \epsilon$. Let us prove the claim. Pick a maximal $2r$ -net a_1, a_2, \dots, a_{M_n} , that is a maximal set of points in F_n such that any two have distance greater than or equal to $2r$. Then the $4r$ -balls around the points a_i are covering F_n . Hence $M_n \geq |F_n|/B_{4r}(1_{\Gamma})$. Then at least half of the a_i 's are in $F_n \setminus B_{r+1}(\partial F_n)$. The balls around these elements being far from the boundary are completely in F_n . Hence we have at least $\frac{1}{2}|F_n|/B_{4r}(1_{\Gamma})$ disjoint translates of $B_r(1_{\Gamma})$ in F_n .

■

In the rest of this section we shall have an extra assumption on the amenable group Γ . We call an amenable group Noether if $\mathbf{F}_2[\Gamma]$ is a Noether ring. That is, any left submodule of $(\mathbf{F}_2[\Gamma])^r$ is finitely generated. According to Hall's theorem [17], if Γ is polycyclic-by-finite then Γ is Noether.

PROPOSITION 7.2: *If $V \subset [\sum_{\Gamma}]^r$ is a linear subshift and Γ is Noether, then $h_{\Gamma}(V) + h_{\Gamma}(V^{\perp}) = r$.*

First of all $V^{\perp} \subset [\sum_{\Gamma}^0]^r \subset [\sum_{\Gamma}]^r$, hence the expression $h_{\Gamma}(V^{\perp})$ is meaningful. By our assumption V^{\perp} is a finitely generated module, so let us choose a $\{r_1, r_2, \dots, r_k\}$ finite generator set. We need to prove that

$$\lim_{n \rightarrow \infty} \frac{\log_2 |V_{F_n}^{\perp}|}{|F_n|} = r - h_{\Gamma}(V).$$

In order to do so it is enough to see that

$$(7) \quad \lim_{n \rightarrow \infty} \frac{\log_2 |V_{F_n}^\perp| - \log_2 |V_n^\perp|}{|F_n|} = 0,$$

where V_n^\perp denotes the set of elements in V^\perp , supported in F_n . Remember that $V_{F_n}^\perp$ denotes the restrictions of the elements of V^\perp , therefore $V_{F_n}^\perp \supset V_n^\perp$. By linear algebra,

$$\dim_{\mathbf{F}_2}(V_{F_n}) + \dim_{\mathbf{F}_2}(V_n^\perp) = r|F_n|,$$

that is

$$\lim_{n \rightarrow \infty} \frac{\log_2 |V_n^\perp|}{|F_n|} = r - h_\Gamma(V).$$

Let us prove (7). Any element of V^\perp can be written (not in a unique way !) in the form $\sum_{i=1}^k a_i r_i$, where $a_i \in \mathbf{F}_2[\Gamma]$. Denote by D the supremum of the diameters of the r_i 's. If $\text{supp}(a_i) \subset F_n \setminus B_{D+1}(\partial F_n)$, for all i , then $\sum_{i=1}^k a_i r_i \in V_n^\perp$. On the other hand, if $\text{supp}(a_i) \cap B_{D+1}(F_n) = 0$ for all i , then $\sum_{i=1}^k a_i r_i|_{F_n} = 0$. Therefore we have the pigeon-hole estimate

$$|V_{F_n}^\perp| \leq |V_n^\perp| 2^{krB_{D+1}(\partial F_n)},$$

that is

$$\frac{\log_2 |V_{F_n}^\perp| - \log_2 |V_n^\perp|}{|F_n|} \leq \frac{krB_{D+1}(\partial F_n)}{|F_n|},$$

and the right hand side tends to zero. \blacksquare

Now we prove the density property.

PROPOSITION 7.3: *If Γ is Noether and $V \subset [\sum_\Gamma]^r$ is a linear subshift, then $h_\Gamma(V) = h_\Gamma(V^0)$.*

Proof: By our previous Proposition, $h_\Gamma(V^\perp) = r - h_\Gamma(V)$. Therefore $h_\Gamma(\overline{V^\perp}) = r - h_\Gamma(V)$, where $\overline{V^\perp}$ is the closure of V^\perp as $[\sum_\Gamma^0]^r$ imbeds into $[\sum_\Gamma]^r$. Using our previous Proposition again,

$$h_\Gamma((\overline{V^\perp})^\perp) = h_\Gamma(V).$$

If $\xi \in (\overline{V^\perp})^\perp$ then ξ is finitely supported and $\xi \in (V^\perp)^\perp = V$, that is $\xi \in V^0$. Therefore,

$$h_\Gamma(V) = h_\Gamma((\overline{V^\perp})^\perp) \leq h_\Gamma(V^0) \leq h_\Gamma(V). \quad \blacksquare$$

Actually, our proofs of the last two Propositions gives a slightly stronger result:

PROPOSITION 7.4: *Let Γ be Noether and let V be a linear subshift such that V^0 is generated by r_1, r_2, \dots, r_k as left $\mathbf{F}_2[\Gamma]$ -module. Denote by \tilde{V}_n the set of those elements in V^0 which can be written in the form $\sum_{i=1}^k a_i r_i$, where all the a_i 's are supported in F_n . Then $\lim_{n \rightarrow \infty} (\log_2 |\tilde{V}_n|) / |F_n| = h_\Gamma(V)$.*

8. The Yuzvinskii formula

Recall Yuzvinskii's additivity formula for Abelian groups [KS]. Let $\Gamma \cong \mathbf{Z}^d$ and α be a Γ -action of continuous automorphisms on a compact metric group X . Suppose that Y is a compact α -invariant subgroup; then

$$(8) \quad h_\alpha^{\text{top}}(X) = h_\alpha^{\text{top}}(Y) + h_\alpha^{\text{top}}(X/Y).$$

The results of Ward and Zhang [WZ] suggest that a similar statement might be true for general amenable actions. In our paper we prove only a very special case.

PROPOSITION 8.1: *Let $Y \subset X \subset [\sum_\Gamma]^r$ be linear subshifts where Γ is Noether. Then*

$$h_L^{\text{top}}(Y) + h_L^{\text{top}}(X/Y) = h_L^{\text{top}}(X) = h_\Gamma(X),$$

where L is the usual left Γ -action.

Proof: The key observation is the following lemma.

LEMMA 8.1: *Let $V \subset [\sum_\Gamma]^r$ be a linear subshift where Γ is Noether. Then there exists a constant D such that if $\xi \in [\sum_\Gamma]^r$ and $\xi|_{B_D(\gamma)} \in V_{B_D(\gamma)}$ for all $\gamma \in \Gamma$, then $\xi \in V$. That is, linear subshifts are of finite type for Noether groups.*

Proof: Let $V^\perp \subset [\sum_\Gamma^0]^r$ be the orthogonal ideal of V . It is generated by r_1, r_2, \dots, r_N , where all r_i 's are supported in $B_D(1_\Gamma)$. Then $\xi \notin V$ if and only if $\langle \xi, L_\gamma(r_i) \rangle \neq 0$ for some i and $\gamma \in \Gamma$. It means that $\xi|_{B_D(\gamma)} \notin V_{B_D(\gamma)}$. ■

Now we define a metric on X/Y . If $v, w \in X$ let $d([v], [w]) = 2^{-(n-1)}$, where n is the smallest integer such that $(v - w)|_{B_D(\gamma)} \notin Y_{B_D(\gamma)}$ for some $\gamma \in F_n$. Here D denotes the diameter of the joint support of a generator system $\{s_1, s_2, \dots, s_M\}$ of the ideal Y^\perp .

LEMMA 8.2: *The metric d defines the pointwise convergence topology.*

Proof: We need to prove that $d([v_n], 0) \rightarrow 0$ implies that $[v_n] \rightarrow Y$ in the factor topology of X/Y (the converse is obvious). Suppose that $\{[v_n]\}$ does not converge to Y in the factor topology. Then there exists a subsequence v_{n_k} such

that $v_{n_k} \rightarrow v \notin Y$ in the convergence topology of $[\sum_\Gamma]^r$. But then there exists a ball $B_D(\gamma)$ such that $v_{n_k}|_{B_D(\gamma)} \notin Y_{B_D(\gamma)}$ for large k . This contradicts the assumption that $d([v_{n_k}], 0) \rightarrow 0$. ■

Now let us turn back to the proof of our Proposition. Similarly to Proposition 3.2 we have a lower estimate for $s_{X/Y}(n, 1)$ in the d -metric. Let us denote by G_n the set of elements in Y^\perp which can be written in the form $\sum_{i=1}^m c_i s_i$ such that all the c_i 's are supported in F_n . Denote by H_n the set of those elements of $[\sum_\Gamma]^r$ which are supported on $B_D(F_n)$ and orthogonal to G_n . Then by Propositions 7.3 and 7.4, $(\log_2 |H_n|)/|F_n| \rightarrow h_\Gamma(Y)$. We have the following inequality:

$$k_n = |X_{B_D(F_n)}|/|H_n \cap X_{B_D(F_n)}| \leq s_{X/Y}(n, 1).$$

Indeed, there exist k_n elements of $X_{B_D(F_n)}$ such that their pairwise differences $x_i - x_j \notin H_n$, thus $\langle x_i - x_j, L_\gamma s_k \rangle \neq 0$ for some s_k and $\gamma \in F_n$. Hence $d(L_{\gamma^{-1}}([x_i]), L_{\gamma^{-1}}([x_j])) = 1$. Consequently, $h_\Gamma(X) - h_\Gamma(Y) \leq h_L^{top}(X/Y)$. Now fix an ϵ and let $B_R(1_\Gamma) \supset F_m$, where $2^{-m} < \epsilon$. Then obviously

$$s_{X/Y}(n, \epsilon) \leq \frac{|X_{B_{D+r}(F_n)}|}{|Y_{B_{D+r}(F_n)}|},$$

which implies the converse inequality $h_\Gamma(X) - h_\Gamma(Y) \geq h_L^{top}(X/Y)$.

9. Betti numbers

In this section we define an analogue of the L^2 -Betti numbers. Let \tilde{K} be a regular, normal Γ -covering of a finite simplicial complex K , where Γ is an amenable group that acts freely and simplicially on \tilde{K} and $\tilde{K}/\Gamma = K$. We have the ordinary cochain complex of \mathbf{F}_2 -coefficients over \tilde{K} :

$$C^0(\tilde{K}, \mathbf{F}_2) \xrightarrow{d_0} C^1(\tilde{K}, \mathbf{F}_2) \xrightarrow{d_1} \cdots \xrightarrow{d_{n-1}} C^n(\tilde{K}, \mathbf{F}_2).$$

Then the p -cochain space $C^p(\tilde{K}, \mathbf{F}_2)$ is Γ -isomorphic to $[\sum_\Gamma]^{|\mathcal{K}_p|}$, where \mathcal{K}_p denotes the set of p -simplices in K . We define the p -th entropy Betti number $b_E^p(K)$ as $h_\Gamma(\text{Ker } d_p) - h_\Gamma(\text{Im } d_{p-1})$. The following theorem is the analogue of Cohen's theorem [3].

PROPOSITION 9.1: $\sum_{p=0}^n (-1)^p b_E^p(K)$ equals the Euler-characteristics of K .

Proof: By Proposition 5.1,

$$b_E^p(K) = h_\Gamma(\text{Ker } d_p) + h_\Gamma(\text{Ker } d_{p-1}) - h_\Gamma(C^{p-1}(\tilde{K}, \mathbf{F}_2)).$$

Summing up these equations for all p with alternating signs we obtain

$$\sum_{p=0}^n (-1)^p b_E^p(K) = \sum_{p=0}^n (-1)^p |K_p| = e(K). \quad \blacksquare$$

Now let us see the new proof of the result of Cheeger and Gromov.

PROPOSITION 9.2: *If \tilde{K} is contractible, then all entropy Betti numbers are vanishing.*

The proof is much easier than for the L^2 -Betti numbers. If $p > 0$, then \mathbf{F}_2 -cohomologies are vanishing, therefore $b_E^p(K) = 0$ if $p > 0$. If $p = 0$, then the cocycle space is finite so the entropy Betti number must be zero. \blacksquare

COROLLARY 9.1: *If K is a finite acyclic simplicial complex with an amenable fundamental group, then its Euler characteristic is zero.*

Now we prove the analogue of the result of Dodziuk and Mathai.

PROPOSITION 9.3:

$$b_E^p(K) = \lim_{n \rightarrow \infty} \frac{\dim_{\mathbf{F}_2} H^p(L_n, \mathbf{F}_2)}{|F_n|},$$

where $\{L_n\}$ is an exhaustion of \tilde{K} spanned by the Følner-sets.

Remark: Since $\dim_{\mathbf{F}_2} H^p(L_n, \mathbf{F}_2) \geq \dim_{\mathbf{R}} H^p(L_n, \mathbf{R})$, the entropy Betti numbers are at least as large as the corresponding L^2 -Betti numbers. It is easy to construct examples, where some entropy Betti numbers are strictly larger than the corresponding L^2 -Betti number (cf. the remark after Proposition 10.1).

Proof of Proposition 9.3: First note again that $C^p(\tilde{K}, \mathbf{F}_2) \cong [\sum_{\Gamma}]^{|K_p|}$. Denote by R a constant such that for any $[(\gamma, p), (\delta, q)]$ 1-simplex of \tilde{K} , $d_{\Gamma}(\gamma, \delta) \leq R$. Now we can build an extended configuration for $\text{Ker } d_p$ and $\text{Im } d_p$ in the following way. Let $S(\Lambda)$ be the simplicial complex spanned by vertices of the form (γ, p) , where $\gamma \in B_{2R}(\Lambda)$ and $p \in K_0$. Also, let L_n be the simplicial complex spanned by the vertices with first coordinate in F_n . Consider the coboundary operator as $[\sum_{\Gamma}]^{|K_p|} \xrightarrow{d_p} [\sum_{\Gamma}]^{|K_{p+1}|}$. Let $A_p(\Lambda)$ be the space of those functions in $[\sum_{\Gamma}]^{|K_p|}$ which are supported on Λ and are the restriction of a cocycle of $S(\Lambda)$; respectively let $B_p(\Lambda)$ be the space of restrictions of coboundaries of $S(\Lambda)$. Obviously, $A_p(\Lambda)$ is an extended configuration of $\text{Ker } d_p$ and $B_p(\Lambda)$ is an extended configuration of $\text{Im } d_p$. Then the usual pigeon-hole argument and Proposition 4.1 imply that

$$h_{\Gamma}(\text{Ker } d_p) = \lim_{n \rightarrow \infty} \frac{\dim_{\mathbf{F}_2}(Z^p(S(F_n)))}{|F_n|}, \quad h_{\Gamma}(\text{Im } d_p) = \lim_{n \rightarrow \infty} \frac{\dim_{\mathbf{F}_2}(B^p(S(F_n)))}{|F_n|},$$

where Z^p resp. B^p denote the space of cocycles resp. coboundaries. Therefore

$$b_E^p(K) = \lim_{n \rightarrow \infty} \frac{\dim_{\mathbf{F}_2}(H^p(S(F_n), \mathbf{F}_2))}{|F_n|}.$$

Finally, we must prove that

$$\lim_{n \rightarrow \infty} \frac{\dim_{\mathbf{F}_2}(H^p(S(F_n), \mathbf{F}_2)) - \dim_{\mathbf{F}_2}(H^p(L_n, \mathbf{F}_2))}{|F_n|} = 0.$$

Note that it follows from the long exact cohomology sequence induced by the inclusion $L_n \rightarrow S(F_n)$ and the obvious fact that $(\dim_{\mathbf{F}_2}(H^p(S(F_n), L_n, \mathbf{F}_2)))/|F_n|$ tends to zero as $n \rightarrow \infty$. ■

10. Towers and fixed points

In this section we recall some ideas of Farber [7]. Let Γ be a finitely generated residually-2 group. That is, there exists a chain of normal subgroups of prime power index, $\Gamma \supset \Gamma_1 \supset \Gamma_2 \supset \dots$, where $\bigcap_{j=1}^{\infty} \Gamma_j = \{1_{\Gamma}\}$. Let $\tilde{K}/\Gamma = K$ be as in the previous section. Then one can consider the tower of finite simplicial complexes $X_i = \tilde{K}/\Gamma_i$. Note that X_i is a simplicial $(\Gamma : \Gamma_i)$ -covering of K . Farber proved ([7], Theorem 11.1) that $\lim_{j \rightarrow \infty} (\dim_{\mathbf{F}_2} H^i(X_j, \mathbf{F}_2))/|\Gamma : \Gamma_i|$ always exists. The following conjecture is the analogue of Lück's theorem on approximating the L^2 -Betti numbers [12]:

CONJECTURE 10.1: *If Γ is as above a residually-2 group, then*

$$\lim_{j \rightarrow \infty} \frac{\dim_{\mathbf{F}_2} H^i(X_j, \mathbf{F}_2)}{|\Gamma : \Gamma_i|} = b_E^i(K).$$

PROPOSITION 10.1: *The conjecture is true if Γ is free Abelian.*

Proof: First of all note that if Γ is Noether, then any $V \subset [\sum_{\Gamma}]^r$ linear subshift is expansive. That is, there exists $\epsilon > 0$ such that if $x \neq y \in V$, then for some $\gamma \in \Gamma$, $d(L_{\gamma}(x), L_{\gamma}(y)) \geq \epsilon$. This is just a reformulation of Lemma 8.1. The following result is due to Lind, Schmidt and Ward [10].

PROPOSITION 10.2: *If α is an expansive \mathbf{Z}^d -action by automorphisms of a compact Abelian group X , then*

$$\lim_{|\mathbf{Z}^d : \Lambda| \rightarrow \infty, \Lambda \subset \mathbf{Z}^d} \frac{|\text{Fix } \Lambda|}{|\mathbf{Z}^d : \Lambda|} = h_{\alpha}^{\text{top}}(X)$$

where $\text{Fix } \Lambda$ denotes the set of fixed points of the subgroup Λ .

Now let us turn to the proof of Proposition 10.1. Let Z_j^i be the space of i -cocycles on X_j and Z^i be the space of i -cocycles on \tilde{K} . Then Z_j^i is exactly the set of fixed points of the subgroup Γ_j on Z^i . (Note that the similar statement on coboundaries would not be necessarily true.) By Proposition 10.2, $\lim_{j \rightarrow \infty} (\dim_{\mathbf{F}_2} Z_j^i)/|\Gamma : \Gamma_j| = h_\Gamma(Z^i)$. If C_j^i denotes the space of i -cochains on X_j and C^i denotes the space of i -cochains on \tilde{K} , then $(\dim_{\mathbf{F}_2} C_j^i)/|\Gamma : \Gamma_j| = |K_i| = h_\Gamma(C^i)$, for all j . By our Proposition 5.1,

$$b_E^i(K) = h_\Gamma(Z^i) + h_\Gamma(Z^{i-1}) - h_\Gamma(C^{i-1}).$$

Also,

$$\dim_{\mathbf{F}_2} H^i(X_j, \mathbf{F}_2) = \dim_{\mathbf{F}_2}(Z_j^i) + \dim_{\mathbf{F}_2}(Z_j^{i-1}) - \dim_{\mathbf{F}_2}(C_j^{i-1}).$$

Hence our Proposition follows. \blacksquare

It is not hard to construct a \tilde{K} , where for some p the entropy and L^2 -Betti numbers differ. Simply consider the Cayley graph of \mathbf{Z}^d and then just stick a \mathbf{RP}^4 on each vertex. Then if L_n denote the approximative complexes for some Følner-exhaustion,

$$b_E^4(K) = \lim_{n \rightarrow \infty} \dim_{\mathbf{F}_2} \frac{H^4(L_n, \mathbf{F}_2)}{|F_n|} = 1$$

and

$$L_{(2)} b^4(K) = \lim_{n \rightarrow \infty} \dim_{\mathbf{R}} \frac{H^4(L_n, \mathbf{R})}{|F_n|} = 0.$$

11. The Grothendieck group and the integrality of the Betti numbers

First we recall the notion of the Grothendieck group of a non-commutative ring R [18]. Let $G(R)$ be the Abelian group, defined by generators $\{[M]\}$, where the M 's are the finitely generated left R -modules up to isomorphism. The relations are in the form $[M] + [N] = [L]$, for any exact sequence $0 \rightarrow M \rightarrow L \rightarrow N \rightarrow 0$. Lück [13] proved that if $R = \mathbf{C}[\Gamma]$, where Γ is amenable, then $[\mathbf{C}[\Gamma]]$ generates an infinite cyclic subgroup in $G(R)$.

PROPOSITION 11.1: $[\mathbf{F}_2[\Gamma]]$ generates an infinite cyclic subgroup in $G(\mathbf{F}_2[\Gamma])$ for any finitely generated amenable group Γ .

Proof: It is enough to define a rank on finitely generated $\mathbf{F}_2[\Gamma]$ -modules, such that $\text{rk}([\mathbf{F}_2[\Gamma]]) = 1$ and $\text{rk}([M]) + \text{rk}([N]) = \text{rk}([L])$ if

$$0 \rightarrow M \xrightarrow{i} L \xrightarrow{p} N \rightarrow 0.$$

Let $\text{rk}(M) = h_\Gamma(\widehat{M})$. Now apply Proposition 5.1 for the subshifts

$$0 \rightarrow \widehat{N} \xrightarrow{\widehat{p}} \widehat{L} \xrightarrow{\widehat{i}} \widehat{M} \rightarrow 0$$

and the additivity follows. ■

Linnell [11] proved that all L^2 -Betti numbers are integers for torsion-free elementary amenable group Γ . We can prove the following proposition.

PROPOSITION 11.2: *If Γ is poly-infinite-cyclic, then $h_\Gamma(V)$ is an integer for any linear subshift V .*

Proof: Let $M = \widehat{V}$ be the dual $F_2[\Gamma]$ -module of our subshift. Then, by Theorem 3.13 [17], M has a finite resolution by finitely generated projective modules:

$$0 \rightarrow M_n \rightarrow \cdots \rightarrow M_2 \rightarrow M_1 \rightarrow M \rightarrow 0.$$

Then, as we pointed out earlier, the dual sequence

$$0 \rightarrow V \rightarrow V_1 \rightarrow V_2 \rightarrow \cdots \rightarrow V_n \rightarrow 0$$

is an exact sequence of linear subshifts and continuous homomorphisms, where $V_i = \widehat{M_i}$. By Proposition 5.1 it is enough to show that all the $h_\Gamma(V_i)$'s are integers. By a result of Grothendieck and Serre (Theorem 4.13 [17]), if Γ is poly-infinite-cyclic, then all finitely generated, projective $F_2[\Gamma]$ -modules are stably free. Hence, using the notation of the previous section,

$$h_\Gamma(V_i) = \text{rk}(\widehat{V_i}) = \text{rk}((F_2[\Gamma])^n) - \text{rk}((F_2[\Gamma])^m) = n - m$$

is an integer. ■

References

- [1] M. F. Atiyah, *Elliptic operators, discrete groups and von Neumann algebras*, Asterisque **32–33** (1976), 43–72.
- [2] J. Cheeger and M. Gromov, *L^2 -cohomology and group cohomology*, Topology **25** (1986), 189–215.
- [3] J. M. Cohen, *Von Neumann dimension and the homology of covering spaces*, The Quarterly Journal of Mathematics. Oxford **30** (1979), 133–142.
- [4] J. Dodziuk, *De Rham-Hodge theory for L^2 -cohomology of infinite coverings*, Topology **16** (1977), 157–165.

- [5] J. Dodziuk and V. Mathai, *Approximating L^2 -invariants of amenable covering spaces: A combinatorial approach*, Journal of Functional Analysis **154** (1998), 359–378.
- [6] G. Elek, *The Euler characteristic of discrete groups and Yuzvinskii's entropy addition formula*, The Bulletin of the London Mathematical Society **31** (1999), 661–664.
- [7] M. Farber, *Geometry of growth: approximation theorems for L^2 -invariants*, Mathematische Annalen **311** (1998), 335–375.
- [8] E. Hewitt and K. A. Ross, *Abstract Harmonic Analysis II*, Springer-Verlag, Berlin–Heidelberg–New York, 1970.
- [9] B. Kitchens and K. Schmidt, *Automorphisms of compact groups*, Ergodic Theory and Dynamical Systems **9** (1989), 691–735.
- [10] D. Lind, K. Schmidt and T. Ward, *Mahler measure and entropy for commuting automorphisms of compact groups*, Inventiones Mathematicae **101** (1990), 593–629.
- [11] P. A. Linnell, *Division rings and group von Neumann algebras*, Forum Mathematicum **5** (1993), 561–576.
- [12] W. Lück, *Approximating L^2 -invariants by their finite-dimensional analogues*, Geometric and Functional Analysis **4** (1994), 455–481.
- [13] W. Lück, *Dimension theory of arbitrary modules over finite von Neumann algebras and L^2 -Betti numbers. II: Applications to Grothendieck groups, L^2 -Euler characteristics and Burnside groups*, Journal für die reine und angewandte Mathematik **496** (1998), 213–236.
- [14] J. Moulin Ollagnier, *Ergodic theory and statistical mechanics*, Lecture Notes in Mathematics **1115**, Springer-Verlag, Berlin, 1985.
- [15] D. S. Ornstein and B. Weiss, *Entropy and isomorphism theorems for actions of amenable groups*, Journal d'Analyse Mathématique **48** (1987), 1–141.
- [16] P. Pansu, *Introduction to L^2 -Betti numbers*, Fields Institute Monographs **4** (1996), 53–86.
- [17] D. S. Passman, *The Algebraic Structure of Group Rings*, Wiley, New York, 1977.
- [18] J. Rosenberg, *Algebraic K-theory and its Applications*, Springer Graduate Texts in Mathematics **147**, Springer-Verlag, Berlin, 1994.
- [19] D. Ruelle, *Thermodynamic formalism*, in *Encyclopedia of Mathematics and Its Applications*, **5**, Addison-Wesley, Reading, MA, 1978.
- [20] K. Schmidt, *Dynamical systems of algebraic origin*, Progress in Mathematics **128**, Birkhäuser Verlag, Basel, 1995.
- [21] T. Ward and Q. Zhang, *The Abramov–Rohlin entropy addition formula for amenable group actions*, Monatshefte für Mathematik **114** (1992), 317–329.