ISRAEL JOURNAL OF MATHEMATICS 132 (2002), 315-335

AMENABLE GROUPS,
TOPOLOGICAL ENTROPY AND BETTI NUMBERS

BY

GABOR ELEK*

Alfred Renyi Mathematical Institute of the Hungarian Academy of Sciences
P.O. Bozx 127, H-1364 Budapest, Hungary
e-mail: elek@renyi.hu

ABSTRACT

We investigate an analogue of the L2-Betti numbers for amenable linear
subshifts. The role of the von Neumann dimension shall be played by the
topological entropy.

1. Introduction

Let T be a finitely generated group. Then the Hilbert space [?(I') has a natural

left T-action by translations:

Using the so-called von Neumann dimension we can assign a real number to
any D-invariant linear subspace of [[2(T')]",n € N satisfying the following basic

L, (f)(8) = f(y719).

axioms [16).

1.

Positivity: If V C [[>(T')]" [-invariant linear subspace, then dimp(V) > 0.

Also, dimp (V') = 0 if and only if V =0.

. Invariance: If V C [I2(D)]", W C [I*(T)]™ and T is a I-equivariant
isomorphism from V to a dense subset of W, then dimp(V') = dimp(W).
Additivity: If Z is the orthogonal direct sum of V and W, then dimp(Z) =

dimp (V) + dimp(W).
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4. Continuity: If V1 D V5 D -+ - is a decreasing sequence of I'-invariant linear
subspaces, then

dimp([ ] V;) = lim dimp(V;).

j—oo

18

5. Normalization: dimr[I(I")] = 1.

There is an important application of the von Neumann dimension in algebraic
topology due to Atiyah [1] (see also [4]). He defined certain invariants of finite
simplicial complexes: the L2-Betti numbers. The idea is the following. Let K
be an infinite, simplicial complex with a free and simplicial I-action as covering
transformations such that K/T' = K is finite. Denote by Cf’z,)(f( ) the Hilbert
space of square-summable, real p-cochains of K. Then one has the following
differential complex of Hilbert spaces,

T d =\ d dn-1 n /7>
where the dy,’s are the usual coboundary operators.
Note that C&)(I? ) & [1%(I))/¥»!, where K, denotes the set of p-simplices in K.
Atiyah’s L2-Betti numbers are defined as

L9)V?(K) = dimr Ker d,, — dimp Imd,,_;.

Let us list some basic results on the L2-Betti numbers.
e (Dodziuk, [4]) If K and I are homotopic by a I'-invariant homotopy, then
the corresponding L2-Betti numbers of K JT = K and L /T = L are equal.
o (Cohen, [3])

n

S (F1PLbP(K) = e(K),
p=0
the Euler characteristic of K.

o (Cheeger and Gromov, [2]) If K is contractible and T is amenable, then all
L?-Betti numbers are vanishing.

o (Linnell, [11]) If T is elementary amenable and torsion-free, then all L2-
Betti numbers are integers.

e (Luck, [12]) Let T be residually finite and

.8
e
I
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normal subgroups of finite index and let X; = K /T'; be the corresponding
finite coverings of K. Then

T dimR Hp(Xi, R)
Lab?(8) = im — =

e (Dodziuk and Mathai [5]) If {L,}°° is an exhaustion of K by finite
simplicial complexes spanned by a {F,}5; Fglner-exhaustion, then

L(Q)bp(.K) = hm MM
i—00 |F,]

Note that the second and the third results together imply that if K is an acyclic
simplicial complex with amenable fundamental group, then its Euler character-
istic is zero [2]. Another interesting application is due to Liick: If I' is amenable,
then the group algebra C[I'] as a free module over itself generates an infinite
cyclic subgroup in the Grothendieck group of C[I'] [13].

The analogue setting we are investigating in this paper is the foliowing. Let
I' be a finitely generated amenable group (see [6] why amenability is crucial).
We denote by Y . the full Bernoulli shift that is the linear space of Fy-valued
functions on I', where F3 is the field of two elements. The space ) | is a compact,
metrizable space in the pointwise convergence topology equipped with the natural
left T'-action by translations. A space V' C [) |" is a linear subshift if it is
linear as a Fa-vector space, closed in the topology and invariant with respect to
the I'-action. The notion of dimension is the topological entropy of the linear
subshifts. This is well-known for Z and Z%-actions and somehow less-known for
general amenable group actions (nevertheless see [14]). We shall observe that our
dimension hr satisfies similar axioms as dimp:

1. Nonnegativity: For any V linear subshift : hp(V) > 0. But it can be

zero even if V is not zero.

2. Monotonicity: If V C W, then Ap(V) < hp(W).

3. Invariance: If T : V — W continuous I'-equivariant linear isomorphism,

then hp(V) = hp(W).

4. Additivity: If Z =V & W, then hp(Z) = hp(V) + hp(W).

5. Continuity: If Vi D V5 D --- is a decreasing sequence of linear subshifts,

then

Ar(( Vi) = lim e (V;).
i=1

6. Normalization: hr(} ) =1.
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Now let K be as above. Then we have the ordinary cochain complex of Fa-
coeflicients over K:

COR,Fy) % CUK,F) B - 3 O"(K, Fa).

Then the p-cochain space C?(K,Fy) is T-isomorphic to [Y_p]¥?!, where K, de-
notes the set of p-simplices in K. We define the p-th entropy Betti number b% (K)
as hp(Kerd,) — hr(Imd,_1). In this paper we shall prove the following analogues
of the L2-results.
e If K and L are homotopic by a I'-invariant homotopy and I' is poly-cyclic,
then the corresponding entropy-Betti numbers of K /T =K and ]~L/F =1L
are equal.

p=0
the Euler characteristic of K.

o If K is contractible, then all entropy-Betti numbers are vanishing. (This
is quite obvious; the point is that the corollary on the vanishing Euler-
characteristic still follows from this and the previous statement.)

o If I' is poly-infinite-cyclic, then all entropy-Betti numbers are integers.

e Let I' be free Abelian and

ro>ryoIly >, Ii=1r

e

1

©
Il

normal subgroups of finite index and let X; = K /T'; be the corresponding
finite coverings of K. Then

. . dimp Hp(Xi, F2)
P — 2
bp(K) = lim — 7

o If {L,}22, is an exhaustion of K by finite simplicial complexes spanned by
a {F,}52, Folner-exhaustion, then

dimp, H?(L,,F52)
m

= Jim A

b (K)

We shall also prove an analogue of Liick’s result on the Grothendieck-group
for the group algebras Fo[I'].
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2. Amenable groups and quasi-tiles

Let T' be a finitely generated group with a symmetric generator set
{91,92,---,9x}. The right Cayley-graph of ', Cr, is defined as follows. Let
V(Cr) =T, E(Cr) = {(a,b) € I' x T: there exists g; : ag; = b}. The shortest
path distance d of Cr makes I" a discrete metric space. We shall use the following
notation. If H C T is a finite set, then B,.(H) is the set of elements a in I’ such
that there exists h € H,d(a,h) < r. We denote B;(H)\H by 8H and B.(H)\H
by 8,.H. An exhaustion of I' by finite sets

00
lre RCF,C---, UF3=P
j=1

is called a Fglner-exhaustion if for any r € N: lim, oo (|0,Fn|/|Fn]) = 0. A
group I is called amenable if it possesses a Fglner-exhaustion. Some amenable
groups have tiling Fglner-exhaustion, that is any F), is a tile: There exists C C I
such that {cFy}.ec is a partition of T'. For example, Z™ has this tiling property.
As observed by Ornstein and Weiss [15] any amenable group has quasi-tiling
Fglner-exhaustion. Let us recall their construction. Let {A4;}°, be finite sets.
Then we call them e-disjoint if there exist subsets A; C A4; so that 4;NA; = 0 if
i # j, and |4;]/]As] > 1 — ¢ for all 5. Now let B another finite set. We say that
{A;}2, (1 — €)-cover B, if

|BNUZ, Al

>1-e
| Bl

The subsets of I', 1r € Th C T3 C --- C Ty, form an e-quasi-tile system if for
any finite subset of A C I there exists C; CI', 7 =1,2,..., N such that

L CTiNnCT; =0ifi # j.

2. {cT; : c € C;} are e-disjoint sets for any fixed .

3. {CiT;,1 > i > N} form a (1 — €)-cover of A.
The following proposition is Theorem 6 in [15]:

PROPOSITION 2.1: If Fy C Fy C --- is a Fglner-exhaustion of an amenable group,
then for any € > 0 we can choose a finite subset F,, C F,, C --- C F,

ny Such

that they form an e-quasi-tile system. The number N may depend on e.

3. The topological entropy of linear subshifts

First of all we define an averaged dimension hp(W) for linear subshifts and
then we shall show that it coincides with the topological entropy. Let I' be
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a finitely generated amenable group with Fglner-exhaustion 1r € F; C F3 C

- U‘;’;l F; =T. We introduce some notations. If A C I is a finite set, then
let [3° )" be the space of functions in [3p]" supported on A. Also, [S_2]" denotes
the space of finitely supported functions. Now let W C [}_]" be a [-invariant
not necessarily closed linear subspace. Then for any finite A C T, let Wa C [>°,]"
be the linear space of functions 5 supported on A such that there exists v € W:
nla=v s

Definition 3.1: hp(W) = limsup,,_, . (logy |[Wr,|/|Fr|)

Note that log, |Wr, | is just the dimension of the vector space W, over the field
F,. It will be obvious from the next proposition that Ar(W) does not depend on
the particular choice of the exhaustion.

PROPOSITION 3.1: 1. hp(W) = hp(W), where W denotes the closure of W in
the pointwise convergence topology.

2. hp(W) = liminf, . (log, [Wr,|)/|Fr|, hence limy,_,o (l0gs |Wg,|)/|Fnl)
always exists and equals hp (W).

Proof: The first part is obvious from the definition. For the second part we
argue by contradiction. Suppose that

hp(W) — liminf —=——=" =4 > 0.
Consider a subsequence Fy,, C Fj, C --- such that

logs |Wg, 1
oy 2 WE] oy W

6,
i—00 ]Fn,l T om0 1Fnl

where the explicit value of € shall be chosen later accordingly. Then pick an
e-quasi-tile system from our subsequence: F,,, C Fp,, C -+ C Fp,,. Now we
take an arbitrary F,, from the original Fglner-exhaustion. By Proposition 2.1 we
have an e-disjoint (1 — €)-covering of F,, by translates of the quasi-tile system.
Denote by Ry, R, ..., Ry those tiles which are properly contained in F,,. Then
we have the following estimate,

k
(1) |WF ! S 2("'5|Fn|+T|Fn\BD+1(3Fn)|)H|WR_I’
i=1
where D is the diameter of the largest tile F,,,. The inequality (1) follows
from the fact that a function £ € Wg, is uniquely determined by its restrictions
on the covering tiles and its restriction on the uncovered elements. The latter
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one consists of two parts: the elements which are not covered at all by the
original covering and the elements which are covered only by tiles intersecting
the complement of F,. These “badly” covered elements must be in a (D +
1)-neighbourhood of the boundary of F,,. Also, by e-disjointness we have the
estimate

k
1
(2) Zle| < 1__€|Fn|
i=1
Therefore,
Wi, | < 20relFal+riFa\Bo sy (OFu)) g i (hr=6+0)| Fal
Hence,
log, |WF, | r|Fn\Bp+1(0Fy)|) 1
o217 Ol o hr — 46 .
(3) A <re+ 7ol +1_6( r—0+e)

Consequently, if we choose € small enough, then for large n,

log, (W, | 6
o2l o 2
ST

leading to a contradiction. n

Now we recall the notion of topological entropy. Let I" be an amenable group
as above and let X be a compact metric space equipped with a continuous
I-action; a: I' — Homeo(X). Instead of the original definition of Moulin
Ollagnier [14] we use the equivalent “spanning-separating” definition, that is
a direct generalization of the Abelian case [20]. We call a finite set S C X
(n, €)-separating if for any distinct points s,t € S there exists y € F,, such that

d(a(y71)(s),a(y~1)(t)) > e. We denote by s(n,¢) the maximal cardinality of
such sets. We call a finite set R C X (n,¢)-spanning if for any x € X there
exists y € R such that d(a(y™!)(z),a(y"!)(y)) < ¢ for all y € F,. We de-
note by r(n,e€) the minimal cardinality of such sets. Obviously, if ¢ < ¢ then
s(n,€') > s(n,€),r(n,€) > r(n,€). Also, we have the inequalities

r(n,e) < s(n,e) <r(n,e/2).

Indeed, any maximal (n, €)-separating set is (n, €)-spanning. On the other hand
if R=x1,x9,...,2% is a minimal (n,s/2)-spanning set, then

C»

D(z;,n,e/2),

i=1
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where
D(z;,n,e/2) = {y € X: dla(y™ ) (x),a(v"(y)) < g/2,for all vy € F,}.

Any D(z;,n,e/2) can contain at most one element of a (n,€)-separating set,
hence s(n,€) < r(n,e/2).
Consequently,
. logyr(n,e) . . log, s(n, €)
lim lim sup —=———= = lim limsup —=——-"—=
e—0 n_,oop |Fn| e—0 n—)oop |Fn|
This joint limit is called the topological entropy of the I'-action and denoted by
heP (X).
PROPOSITION 3.2: Let V C [S.p]" be a linear subshift. Then kP (V') = hp(V).

Proof: First we fix a metric on V that defines the pointwise convergence topol-
ogy. If v,w € V, then let dy (v, w) = 2=™~1), where n is the infimum of &’s such
that v |p, # w |p,. First note that |Vg, | < s(n,1). Indeed if vy, vy, ..., v, is a sub-
set of V' such that v; |, # v; |F, When i # j, then there exists v € F, such that
L,-1v;(1r) # L,-1v;(1r). Fix an € and choose K., M. € N such that e > 27K«
and Fg, C Bye(lr). Then we claim that s(n,e) < |V, (r,)|- Indeed, if
T | By (Fa)= Y |Base(F,)» then for any v € Fy, dy(Ly-1(2), Ly-1(y)) < 2-Ke <.
Hence if € < 1,

logs |V;
he(v) = tim 282VEl < jo0 (sn,e)) < lim logs Vi, (| _

hp(V). 1

4. Extended configurations

The notion of extended configuration is due to Ruelle in a slightly different form.
Again we start with a linear subshift V' C [3_]". For any A C T finite set
let Vi ¢ [3,]" be a finite dimensional linear subspace satisfying the following
axioms:

e Extension: V) C Vi

e Invariance: V{; = L. (V).

e Transitivity: If A C M, then for any £ € Vj} there exists u € V,{Z such
that & [a= p |a.
Determination: If{ € [3_.]" and for any A C T finite there exists £s € Vi
such that £ [a= €A, then £ € V.
We call such a system an extended configuration of V. Its topological entropy is
VR /|,

defined as h{*(V) = limsup,,_, .,
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PrOPOSITION 4.1: h¥# (V) = hr(V) (compare to Theorem 3.6 [19])

Proof: Let us suppose that h#(V)—hr(V) = § > 0. Again choose an e-quasi-tile
system F, Fr,, ..., Fpy such that [Vp,_ | < 2(hr+)lFni | where the explicit value
of ¢ will be given later. Denote by VFkn_ the space of functions y in Vp, such that
there exists £ € ng( Fu) with £ |F, = ft |F,,. By Extension and Determination
properties it is easy to see that for large p

4) Vi =Vr,,

where 1 < i < N. Let us pick a large p. Then we can proceed almost the same
way as in the previous section. Denote by R;, 1 < i < k those translates in the
e-disjoint (1 — e€)-covering of a Fglner-set F,, such that not only the R;’s but even
the By, (R;) balls are contained in F,,. Then by Transitivity we have the following
estimate,

k
IV[? | < 9(relFn|+7|Fo\Bp i p11(9F)|) H |V}1{‘ I
=1

That is by Invariance, (2) and (4),

log, |V | 7| Fu\Bpyp+1(9F) 1 .0
———=<re+ £ + hr —d+¢
o . ot
which leads to a contradiction provided that we choose € small enough. |

5. Basic properties

Now we are in a position to prove the basic properties of Ar as stated in the
Introduction. The Monotonicity, Normalization and Positivity axioms are
obviously satisfied.

LEMMA 5.1: Let VW C [Y"p]" be linear subshifts such that VYW = 0. Then
hr(V)+ hp(W) = hp(V & W).

Proof: First note that just because VN is the zero subspace it is not necessarily
true that VA N Wy = 0 as well. However, we can prove that N/? =VanW,is
an extended configuration of the zero subspace. We only need to show that the
Determination axiom is satisfied. Suppose & € [ ]" such that £ |p, € Vi, "W, .
Then there exists v, € V,w, € W such that £ |p,= vn |F,= wy |p,. Hence
vy, — &, w, — £ in the topology of [>";]". The spaces V and W are closed, thus
£ e VNW, hence £ = 0. By elementary linear algebra,

dimg, (V & W) + dimp, Nf\z = dimp, Vi + dimg, Wa.
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Hence by our Proposition 4.1 our Lemma follows. |

Now we prove a property of the entropy that is slightly more general than
invariance.

PRrOPOSITION 5.1: Let T: V. — W be a continuous T'-equivariant linear map
between linear subshifts V C [ _p]", W C [>_p]". Then hr(KerT) + hr(ImT') =
ke (V).

Proof: First of all let us note that by the compactness of V' and the continuity
of T both KerT and ImT are linear subshifts. Now let us consider the natural
right action of Fo(I') on [ 1", Ry f(x) = f(2y). This action obviously commutes
with our previously defined left I-action. The right action can be extended to
s x 7 matrices with coefficients in Fy(I') acting on the column vectors [ p]".
Obviously, any such matrix M defines a I'-equivariant map; Tar: [3 )" = [ p)%

LEMMA 5.2: Any continuous I'-equivariant linear map T: V — W can be given
via multiplication by some s x r matrix Ty with coefficients in F4(T).

Proof: Since T is uniformly continuous the value of T(v)(1r) is determined by
the value of v on a finite ball B, where B does not depend on v. Hence for any
1<i<s
T()(Ir) =Y > k- v,
Y€B j=1
where ¢; € Fo. By {Tm}ij = {3 ,ep 7} € Matgy, (Fo[l]) define a s x r
matrix. Then for any v € V, Ty (v)(1r) = T(v)(1r). Hence by the I'-equivariance
of the matrix multiplication
Tr (0)(7) = Ly-1(Tr (v))(1r) = Tag (L4 (v))(Ir)
=T(Ly-())Ar) =T@)(n).
Now we return to the proof of our Proposition. We denote by Tas the matrix
and by k the diameter of the ball B defined in our Lemma. Let
N{ =
{v e [324] : there exists z € Vp,(a), such that z [\=v [o and T'(z) |a= 0}

and

M= {we[Y,]*: there exists z € Vi, (a), such that T(2) |a= w [a}.
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Then N is an extended configuration of Ker Ths, M{! is an extended configu-
ration of Im Thy. Let Ta: Vg, (a) — [2_4]° be the restriction of T onto A. Then
Im Ty = M§!. We have the usual pigeon-hole estimate:

(5) INB,| < |KerTg,| < |NE |21 B(OF)1,
Also, by linear algebra we obtain

dimg, Ker T, F, + dimg, Im Tpn = dimy, Vg, (r,)
that is
(6) log, | Ker Tr, | + log, | ImTr, | = log, Ve, (£l

It is easy to see that (5) and (6) together imply the statement of our Proposition.
[ |

Now we prove the Continuity property.

PROPOSITION 5.2: If V! D V% D ... is a decreasing sequence of linear subshifts,
then

ﬂ V7) = lim hp (V7).

—20
j=1 J

Proof: For any k € N,V* 32, V7. Hence

ﬂ Vi) < Jim hr (V).

i=1
We need to prove the converse inequality. Suppose that for all j, hp(V7) >
hr(ﬂ L V3) + 2e. Let T(j) be a monotone increasing function such that

log, |V pad
g2| Fﬂl Zhr‘(ﬂ VJ
|F]

when s > T(j). We define a monotone non-decreasing function S: N — N such
that S(n) = 1 if there is no such j so that 7(5) < n, and

S(n) = max{j : T(j) < n}

otherwise. Then S(n) — oo as n — oco. Define V{! = VAS ("), where n is the

smallest integer such that |F,,| > |A|. It is easy to see that Vi is an extended
configuration of (72, V7. Therefore, (logy [V |)/|Fu| = hr(j2; V7). On the
other hand, by our construction (log, [V [)/|Fn| > hr((;2, V) + ¢, leading to
a contradiction. 1
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6. Pontryagin duality

In this section we recall the Pontryagin duality theory [8]. Let A be a locally
compact Abelian group and let A be its dual, that is the group of continuous
homomorphisms x: A — S' = {2z € C: |2| = 1}. According to the duality
theorem A is naturally isomorphic to its double dual. The relevant example for
us is A = [Yp]"; its dual is [S2p]" the group of finitely supported elements, where
06 F) = Eoer(x(1): F(7)) for x € [Yp]" and f € [Sr]. Here (a,b) is defined
as y.._; azb;. The additive group of F is viewed as the subgroup {-1,1} € S*.
If H C [}_p]" is a compact subgroup, then

0

Ht ={x¢ [Z]" : (x,h) = 1,for any h € H}.
r

Conversely, if B C [Zg]" is a subgroup then

Blz{fe[Z]T:(X,f)=1foranyxeB}.
r

Then (H1)L = H,(B1)t = B. If A, B locally compact groups and y: A — B
continuous homomorpisms, then its dual IZZ B — A is defined by (;p\(x),a) =
{x,%{a)). Again the double dual of 9 is itself if A and B are both compact or
both discrete. Then % is injective resp. surjective if and only if 1Z is surjective
(resp. injective). Moreover, if we have a short exact sequence of compact or
discrete groups

1241 243> 2 A, — 1,

then its dual sequence
O—>§n——>---—éf12—>ﬁl—>0

is also exact. The next proposition is a version of a result of Kitchens and Schmidt
[9]-

PRroPoOSITION 6.1: The Pontryagin duality provides a one-to-one correspondence
between linear subshifts and finitely generated left Fo[I']-modules.

Proof:  First note that if L, is the left multiplication by v on [} []", then
E7 is the left multiplication by 7~ on [Y_2]". Hence if V = [Y )" is the

natural imbedding of a linear subshift, then (Fy[['])" = [ZIQ]’ L Visa surjective
F;[I']-module homomorpism, that is V' is a finitely generated left F»[I']-module.

Conversely, the dual of a finitely generated Fo[I'-module is a linear subshift. It is
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important to note that if V. C [ _r]", W C [>_r|® are isomorphic linear subshifts,
then the dual of this isomorphism provides a module-isomorphism between W and

V. Conversely, the duals of isomorphic modules are isomorphic linear subshifts.
|

7. The Noether property of group algebras

Let V C [Y_p]" be a linear subshift. We denote by V° the subspace of finitely
supported elements.

PROPOSITION 7.1: If V0 contains a non-zero element then hr(V°) > 0.

Proof:  Let us suppose that a ball B,(11) contains the support of a non-zero
element in V0. We claim that there exists an ¢ > 0 such that if n is large enough,
then F,, contains at least ¢|F,| disjoint translates of B,.(1r). First note that the
claim implies our Proposition. If we have M,, translates of B.(1r) in F,, then we
can find 2M» different elements of V' which are all supported in F,. Therefore

0g, Vi, | o Mo elFl
Fal = TFal = TF

= €.

Hence hr(V?) > €. Let us prove the claim. Pick a maximal 2r-net ay, as, ..., a M,
that is a maximal set of points in F,, such that any two have distance greater
than or equal to 2r. Then the 4r-balls around the points a; are covering F,.
Hence M,, > |F,|/Basr(1r). Then at least half of the a;’s are in F,\B,;1(0F,).
The balls around these elements being far from the boundary are completely in
F,. Hence we have at least 3|F,,|/Bs,(1r) disjoint translates of B,.(1r) in F,,.
]

In the rest of this section we shall have an extra assumption on the amenable
group I'. We call an amenable group Noether if F5[I'] is a Noether ring. That is,
any left submodule of (F3[I'])" is finitely generated. According to Hall’s theorem
[17], if T is polycyclic-by-finite then I' is Noether.

PROPOSITION 7.2: If V. C [} |" is a linear subshift and T is Noether, then
hp(V) + hr(VJ') =r.

First of all V+ < [Y23)" € [32p]", hence the expression hr(V+) is meaning-
ful. By our assumption V1 is a finitely generated module, so let us choose a
{ri,r2,...,7} finite generator set. We need to prove that

log, |V

lim

n—00 ]Fn|

=7 - hr(V).
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In order to do so it is enough to see that

log, |Vﬁ]; | —log, [V, _

- bl

@) A, o]
where V- denotes the set of elements in V*, supported in F,,. Remember that
Vi denotes the restrictions of the elements of V*, therefore Vi O V. By
linear algebra,
dimg, (Vg, ) + dimg, (V") = 7| Fa),
that is log, [ VL]
. Og2 nl _ ._

nll»n;'o A r—hr(V).
Let us prove (7). Any element of V1 can be written (not in a unique way !) in the
form Ele a;r;, where a; € F[T']. Denote by D the supremum of the diameters
of the ri’s. If supp(a;) C F,\Bp41(8Fy), for all 4, then Yt a;r; € V. On
the other hand, if supp(a;) N Bpy1(Fr) = 0 for all 4, then Zi;l a;r; |r,= 0.
Therefore we have the pigeon-hole estimate

VA, < [VHRerBon Or),

that is

log, |VFJ';| — log, |an| < krBpy1(0Fy)
| P - |Ful 7
and the right hand side tends to zero. ]
Now we prove the density property.
ProposITION 7.3: If T is Noether and V C [Y_|" is a linear subshift, then
hr(V) = hr (V).

Proof: By our previous Proposition, (V1) = r — hp (V). Therefore hp(VL) =
r — hp(V), where V1 is the closure of V+ as [Y.2]" imbeds into [ ]". Using
our previous Proposition again,

hr((VE)) = he(V).

If ¢ € (V1)L then ¢ is finitely supported and & € (V4)L = V, that is £ € VO.
Therefore,
hr(V) = he((VH)) <hp(VO) < hp(V). B

Actually, our proofs of the last two Propositions gives a slightly stronger result:



Vol. 132, 2002 AMENABLE GROUPS 329

PRrROPOSITION 7.4: Let I' be Noether and let V be a linear subshift such that
VY is generated by r1,79,...,7k as left Fo[[']-module. Denote by V., the set of
those elements in V° which can be written in the form ZLI a;ri, where all the
a;’s are supported in F,. Then limy,_,c (108, |Vn|)/|Fn| = hr (V).

8. The Yuzvinskii formula

Recall Yuzvinskii’s additivity formula for Abelian groups [KS]. Let T = Z¢ and
a be a I-action of continuous automorphisms on a compact metric group X.
Suppose that Y is a compact a-invariant subgroup; then

(8) he?(X) = hiP (V) + he? (X/Y).

The results of Ward and Zhang [WZ] suggest that a similar statement might be
true for general amenable actions. In our paper we prove only a very special case.

PROPOSITION 8.1: Let Y C X C [} "] be linear subshifts where T is Noether.
Then
REP(Y) + ByP(X/Y) = BP(X) = hr(X),

where L is the usual left ['-action.

Proof: The key observation is the following lemma.

LEMMA 8.1: Let V C [} _r)" be a linear subshift where T is Noether. Then there
exists a constant D such that if € [} ;|" and £ |p,(y)€ VBp(y) for all v € T,
then £ € V. That is, linear subshitfs are of finite type for Noether groups.

Proof: Let V1 C [ p]" be the orthogonal ideal of V. It is generated by
T1,72,...,TN, where all r;’s are supported in Bp(1lr). Then £ ¢ V if and only if
(§, L(r:)) # O for some 7 and 7 € T'. It means that & [, ()¢ VB, (v)- 1

Now we define a metric on X/Y. If v,w € X let d([v], [w]) = 271, where n
is the smallest integer such that (v —w) |, ()¢ YBp(y) for some y € F,. Here D

denotes the diameter of the joint support of a generator system {sy, s2,...,snm}
of the ideal Y.

LeEMMA 8.2: The metric d defines the pointwise convergence topology.
Proof: We need to prove that d([v,],0) — 0 implies that [v,] - Y in the

factor topology of X/Y (the converse is obvious). Suppose that {{v,]} does not
converge to Y in the factor topology. Then there exists a subsequence v,, such
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that vp,, — v ¢ Y in the convergence topology of [} ]". But then there exists
a ball Bp() such that vn, |p,(y)¢ YB,(y) for large k. This contradicts the
assumption that d([vy,],0) — 0. 1

Now let us turn back to the proof of our Proposition. Similarly to Proposition
3.2 we have a lower estimate for sx,y (n, 1) in the d-metric. Let us denote by G,
the set of elements in Y1 which can be written in the form Z:’;l ¢;8; such that
all the ¢;’s are supported in F,,. Denote by H, the set of those elements of [ ]
which are supported on Bp(F,) and orthogonal to GG,,. Then by Propositions
7.3 and 7.4, (logy |Hy|)/|Fn| = hr(Y). We have the following inequality:

kn = | XBpr)l/1Hn N XBpr,yl < sx/v (0, 1).

Indeed, there exist k, elements of Xp,(r,) such that their pairwise differences
z; —x; ¢ H,, thus (z; — x;,Lysg) # O for some s, and v € F,. Hence
d(Ly~1([x3]), Ly-1([z;]) = 1. Consequently, hp(X) — hp(Y) < RYP(X/Y). Now
fix an € and let Bg(1r) D F,,, where 2™ < e. Then obviously

| XBpi (Pl
sx/y(n,€) < ———=2=
/ |YBD+r(Fn)|

which implies the converse inequality hp(X) — hp(Y) > AP (X/Y).

9. Betti numbers

In this section we define an analogue of the L2-Betti numbers. Let K bea regular,
normal I-covering of a finite simplicial complex K, where I' is an amenable group
that acts freely and simplicially on K and K /T = K. We have the ordinary
cochain complex of Fs-coefficients over K:

COUK,Fs) B CLHE,Fo) B ... 5" ™K, Fy).

Then the p-cochain space CP(K, Fy) is T-isomorphic to [ p]/¥#!, where K, de-
notes the set of p-simplices in K. We define the p-th entropy Betti number 5%, (K)
as hp(Kerd,) — hr(Imdp_). The following theorem is the analogue of Cohen’s
theorem [3].

PROPOSITION 9.1: EZZO(—I)Pb’;,;(K ) equals the Euler-characteristics of K.

Proof: By Proposition 5.1,

B(K) = hr(Kerd,) + hr(Ker d,_1) — hp(CP~1(K, Fy)).
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Summing up these equations for all p with alternating signs we obtain

n n

S T(DPH(K) =) (-1)P|Ky| =e(K). ®

p=0 p=0
Now let us see the new proof of the result of Cheeger and Gromov.

PROPOSITION 9.2: If K is contractible, then all entropy Betti numbers are
vanishing.

The proof is much easier than for the L2-Betti numbers. If p > 0, then
F-cohomologies are vanishing, therefore bf%.(K) = 0 if p > 0. If p = 0, then
the cocycle space is finite so the entropy Betti number must be zero. |

COROLLARY 9.1: If K is a finite acyclic simplicial complex with an amenable
fundamental group, then its Euler characteristic is zero.

Now we prove the analogue of the result of Dodziuk and Mathai.
PROPOSITION 9.3:

My (K) = lim dimp, H?(Ln, F5)

n—00 |Fpl

k)

where {L,} is an exhaustion of K spanned by the Fglner-sets.

Remark: Since dimg, HP(L,,F;) > dimg H?(L,,R), the entropy Betti num-
bers are at least as large as the corresponding L2-Betti numbers. It is easy to
construct examples, where some entropy Betti numbers are strictly larger than
the corresponding L2-Betti number (cf. the remark after Proposition 10.1).

Proof of Proposition 9.3: First note again that CP(K,F5) & [>-p)¥»l. Denote
by R a constant such that for any {(v,p), (4, ¢)] 1-simplex of IN(, dr(v,6) < R.
Now we can build an extended configuration for Ker d;,, and Im d, in the following
way. Let S(A) be the simplicial complex spanned by vertices of the form (v, p),
where v € Bag(A) and p € K. Also, let L, be the simplicial complex spanned
by the vertices with first coordinate in F,,. Consider the coboundary operator as
(o]l & [Sop)!K»+1l. Let Ap(A) be the space of those functions in [ p]/¥?!
which are supported on A and are the restriction of a cocycle of S(A); respectively
let B,(A) be the space of restrictions of coboundaries of S(A). Obviously, A,(A)
is an extended configuration of Ker d, and B,(A) is an extended configuration of
Imd,. Then the usual pigeon-hole argument and Proposition 4.1 imply that

. dimp, (ZP(S(F, . dimg, (BP(S(F,
peerdy) = tim TELZEED, - poiting,) = i SR
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where ZP resp. BP denote the space of cocycles resp. coboundaries. Therefore

¥.(K) = lim

n—o0

dimp, (H?(S(Fy), F2))
|Fal
Finally, we must prove that

iy e, (H2(S(Fy), Fy)) — dime, (H?(Ln, F2))

n—00 | Fpl

=0.

Note that it follows from the long exact cohomology sequence induced by the
inclusion L,, — S(Fy) and the obvious fact that (dimg, (H?(S(Fy,), Ln,F2))/|Fal
tends to zero as n — oo. 1

10. Towers and fixed points

In this section we recall some ideas of Farber [7]. Let I' be a finitely generated
residually-2 group. That is, there exists a chain of normal subgroups of prime
power index, ' D I’y D Ty D ---, where ﬂ;’;l I; = {1r}. Let K/T = K be
as in the previous section. Then one can consider the tower of finite simpli-
cial complexes X; = K/T;. Note that X; is a simplicial (' : I';)-covering of
K. Farber proved ([7], Theorem 11.1) that lim;_,oo(dimr, H*(X;,F3))/|T : Ty
always exists. The following conjecture is the analogue of Liick’s theorem on
approximating the L2-Betti numbers [12]:

CoNJECTURE 10.1: IfT is as above a residually-2 group, then

. dimg, H'(X;,F3)
1 2 Js
]—l-golo |P : F,’I

= by (K).
ProprosITION 10.1: The conjecture is true if I' is free Abelian.

Proof:  First of all note that if T is Noether, then any V' C [} ";]" linear subshift
is expansive. That is, there exists ¢ > 0 such that if x # y € V, then for some
v € T, d(Ly(x),L(y)) > €. This is just a reformulation of Lemma 8.1. The
following result is due to Lind, Schmidt and Ward [10].

PROPOSITION 10.2: If o is an expansive Z%action by automorphisms of a
compact Abelian group X, then

| Fix A|

= h¥P(X
|Zd:A1—>{£,1\czd |Z4: A a”(X)
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where Fix A denotes the set of fixed points of the subgroup A.

Now let us turn to the proof of Proposition 10.1. Let Z;: be the space of i-
cocycles on X; and Z* be the space of i-cocycles on K. Then Z} is exactly the
set of fixed points of the subgroup T'; on Z'. (Note that the similar state-
ment on coboundaries would not be necessarily true.) By Proposition 10.2,
lim; o0 (dimp, Z})/|T ¢ Ty = hp(Z%). If C} denotes the space of i-cochains
on X; and C* denotes the space of i-cochains on K, then (dimg, C})/|T": ;| =
K] = Ar(C*), for all j. By our Proposition 5.1,

bio(K) = hr(ZY) + hp(Z71) — hp(CTY).
Also,
dimg, H'(X;, Fy) = dimy, (Z}) + dim, (Z}~") — dimg, (C; ).
Hence our Proposition follows. |

It is not hard to construct a K , where for some p the entropy and L2-Betti
numbers differ. Simply consider the Cayley graph of Z¢ and then just stick a
RP* on each vertex. Then if L,, denote the approximative complexes for some
Fglner-exhaustion,

, HY(L,,F3)

4 - . 7

bp(K) = nhm dimp, R =1

and HYL,,R
Ligt*(K) = lim dimp H(Ln, R) _ 0.

|

11. The Grothendieck group and the integrality of the Betti numbers

First we recall the notion of the Grothendieck group of a non-commutative ring
R [18]. Let G(R) be the Abelian group, defined by generators {{M]}, where the
M’s are the finitely generated left R-modules up to isomorphism. The relations
are in the form [M]+ [N] = [L], for any exact sequence 0 - M — L - N — 0.
Liick [13] proved that if R = C[I'}, where T is amenable, then [C[I']] generates
an infinite cyclic subgroup in G(R).

PROPOSITION 11.1: [F2[I']] generates an infinite cyclic subgroup in G(F»[T)) for
any finitely generated amenable group T'.

Proof: 1t is enough to define a rank on finitely generated F,[I'}-modules, such
that rk([F2[[']]) = 1 and rk({M]) -+ 1k([N]) = tk([L]) if

0-MESLB N
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—

Let rk(M) = hr(M). Now apply Proposition 5.1 for the subshifts

o~

0=-NBLLHM=o0

and the additivity follows. |

Linnell [11] proved that all L?-Betti numbers are integers for torsion-free
elementary amenable group I'. We can prove the following proposition.

ProrosiTiON 11.2: IfT is poly-infinite-cyclic, then hr(V) is an integer for any
linear subshift V.

Proof: Let M = V be the dual F,[T]-module of our subshift. Then, by Theorem
3.13 [17], M has a finite resolution by finitely generated projective modules:

0-M,—»- =>M, > M, - M0
Then, as we pointed out earlier, the dual sequence
0=2V-Vi=Vp—2.-- 2V, 20

is an exact sequence of linear subshifts and continuous homomorphisms, where
V, = ]\//[\l By Proposition 5.1 it is enough to show that all the Ap(V;)’s are
integers. By a result of Grothendieck and Serre (Theorem 4.13 [17]), if T is poly-
infinite-cyclic, then all finitely generated, projective Fa[I']-modules are stably
free. Hence, using the notation of the previous section,

he (Vi) = tk(V;) = tk((F2[T)"™) — tk((F2[T)™) = n —m

is an integer. |
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